
IIIS 2014 Spring: ATCS - Selected Topics in Optimization
Lecture date: Mar 5, 2013
Instructor: Jian Li Scribe: Wei Cao

1 Chernoff Bounds [1]

In probability theory, the Chernoff bound, gives exponentially decreasing bounds on tail distribu-
tions of sums of independent random variables. It is a sharper bound than the known first or
second moment based tail bounds such as Markov’s inequality or Chebyshev inequality, which only
yields power-law bounds on tail decay. However, the Chernoff bound requires that the variates are
independent, a condition that neither Markov nor Chebyshev inequalities requires.

Let X1, ..., Xn be n independent random variables in [0, 1]. Let X =
∑

iXi and µ = E[X] =∑
i E[Xi]. Then, the following inequalities hold:

1. Pr[X > (1 + δ)µ] ≤ e−
δ2µ
3 , δ ∈ (0, 1)

2. Pr[X < (1− δ)µ] ≤ e−
δ2µ
2 , δ ∈ (0, 1)

3. Pr[X > (1 + δ)µ] ≤ e−
(1+δ)ln(1+δ)

4
µ, δ > 1

2 Independent Rounding

2.1 Coin Flipping

Let Xi = 1 if the ith flip is head with probability 1
2 , X =

∑
iXi. From the Chernoff bound, µ = n

2 ,

Pr[X ≥ µ+ λ] = Pr[X ≥ µ(1 +
λ

µ
)] ≤ e−(λ

µ
)2 µ

3 = e
−λ

2

3µ

If λ = O(
√
n), we get that Pr[X ≥ µ(1 + λ

µ)] ≤ e−O(1). If λ = O(
√
n log n), we get that

Pr[X ≥ µ(1 + λ
µ)] ≤ 1

nC
for some constant C.

Hence, w.h.p. (with high probability), X ∈ µ±O(
√
n log n).

2.2 Discrepancy

Let U be a universe of n elements, S1, ..., Sn be the subsets of U . Each element is colored with +1
or −1. For a subset S ⊆ U , define Disc(S) =

∑
v∈S color(v). We want to find a way to color all

the elements such that the discrepancy, defined as

Disc(color) = max
e
|Disc(e)|,

is minimized.
Again we try to utilize the random coloring method. In this case, the colors are not in [0, 1], thus

we can not use Chernoff bound directly. However, a simple linear transformation works as follows.



Consider any specific subset S. Let Xi denote the color of ith vertex, applying a transformation
Yi = (Xi + 1)/2. We can easily see that Yi ∈ [0, 1] and we can use Chernoff bound now: It is

straightforward to see that
∑

i∈S Yi ∈
|S|
2 ±O(

√
n log n) w.h.p. Then, w.h.p.,

Disc(S) =
∑
i∈S

Xi = 2
∑
i∈S

Yi − |S| = 2(
|S|
2

)±O(
√
n log n)− |S| = ±O(

√
n log n).

Therefore Disc(random color) = O(
√
n log n) w.h.p. (we use the union bound here over all subsets).

Remark: In fact, the best bound for the discrepancy problem is O(
√
n). Spencer proved that

a coloring with discrepancy O(
√
n) always exists using a clever entropy argument. However, his

proof does not give a polynomial time algorithm. Recently, Bansal employed the semi-definite
programming method and a Brownian motion type of randomized rounding method and obtained
a polynomial time algorithm for getting a coloring with discrepancy O(

√
n). Both papers are very

beautiful and I highly recommend you to read them.

2.3 Congestion Minimization

Let G = (V,E) be an undirected graph. We are given a set of vertex pairs D = (si, ti)i=1...n, and
Pi = {a collection of paths from si → ti}. Let the congestion on edge e, denoted by cong(e), be
the number of paths containing e. Our goal is to pick one path from each Pi such that

max
e

cong(e)

is minimized.
This problem is NP-hard. Again, we will be using independent rounding method to give an

approximation algorithm.
First we express this problem as an integer program. Let f ip = 1 denotes the event that if the

ith pair uses the path p. Let c denote the congestion of the graph. Then the problem is equivalent
with :

min c
s.t.

∑
p∈Pi f

i
p = 1 ∀i∑

i

∑
e∈p f

i
p ≤ c ∀e

f ip ∈ {0, 1} ∀i, p

As usual, we relax the third constraint to f ip ∈ [0, 1] to obtain a linear programming relaxation.
Then, we use standard LP solver to get a fractional solution. Suppose the fractional solution is fpi .
Now, we obtain an integral solution using randomized rounding, as follows. For each pair i, we do
the following independently:

• Since
∑

p∈Pi f
i
p = 1, we can interpret {f ip}p∈Pi as a probability distribution over all paths in

Pi. Then, we pick exactly one path p ∈ Pi with corresponding probability f ip
1.

1 It is very important to notice that this is different from rounding each path p ∈ Pi independently (with probability
f ip, we choose this path).



The algorithm is very simple. Now, we analyze the congestion induced by the above algorithm.
Consider a particular edge, say e. Let Xe

i = 1 if the path picked in Pi use e. Let Xe =
∑

iX
e
i be

the congestion of edge e. Then,

E[Xe] = E[
∑
i

Xe
i ] =

∑
i

E[Xe
i ] =

∑
i

∑
p∈Pi,e∈p

f ip ≤ c

If c in LP is greater or equal than 1, substitute it into Chernoff bound,

Pr[Xe ≥ kc] ≤ e
−k log k·c

4 .

Letting k = O( logn
log logn), we can see Pr[Xe ≥ kc] ≤ 1

nconst . Using union bound over all edges, we can
see the algorithm is a k-approximation w.h.p.

Otherwise if c < 1, Pr[Xe ≥ kc] may not be smaller than 1
nconst . However, notice that in the

any non-trivial instance, we have OPT ≥ 1. Hence, we only need to show Xe ≥ k w.h.p. in order
to get a k-approximation. Indeed,

Pr[Xe ≥ k] = Pr[Xe ≥ c · k
c

] ≤ e
−c· kc log kc

4 ≤ e
−k log k

4

Therefore we still have a O( logn
log logn)-approximation.

3 Dependent Rounding[3]

In the congestion minimization problem, what if we change “choose one path from each set Pi”
into “choose k different paths of each set Pi” (called multi-path routing problem)? Let us try to do
the same thing as before. Now, the first LP constraint should be

∑
p∈Pi f

i
p = k, ∀i. The fractional

solution {f ip}p∈Pi can not be interpreted as a probability distribution any more (since the sum is
not one). For example, what is {f ip}p∈Pi = {0.5, 0.4, 0.2, 0.9} and we need to choose exactly two
different paths? What should we do here? If we round each path p ∈ Pi independently (with
probability f ip, we choose this path), we may not have exactly k path chosen from Pi (for some Pi
we choose more and some less).

Therefore, we need to introduce some new rounding procedure, the dependent rounding method.
We first consider a general case of dependent rounding.

3.1 On Bipartite Graph

Suppose we are given a bipartite graph (A,B,E) with bipartition (A,B). We are also given a value
xi,j ∈ [0, 1] for each edge (i, j) ∈ E. We provide a randomized polynomial-time scheme that rounds
each xi,j to a random variable Xi,j ∈ {0, 1} such that the following properties hold:

P1. Marginal distribution. For every edge (i, j), Pr[Xi,j = 1] = xi,j

P2. Degree-preservation. Consider any vertex i ∈ A ∪ B. Define its fractional degree di to
be
∑

j:(i,j)∈E xi,j , and integral degree Di to be the random variable
∑

j:(i,j)∈E Xi,j . Then we
have Di ∈ [bdic, ddie].



P3. Negative correlation. If f = (i, j) is an edge, let Xf denote Xi,j . For any vertex i and any
subset S of the edges incident on i:

∀b ∈ {0, 1},Pr[
∧
f ∈ S(Xf = b)] ≤

∏
f∈S

Pr[Xf = b]

A few remarks:

1. As before, we would like to interpret xi,j values as probabilities. This is exactly what P1 says.

2. In this multi-path routing problem, we want the cardinality of rounded-up elements to be
exactly some value. Such cardinality constraints can be seen in many places. P2 can help us
to achieve this.

3. P3 is very useful in many probabilistic analysis, especially when we want to show some
concentration result. If the random variables are negative correlated, all versions of Chernoff
bound we have covered before for independent random variables still hold (You should read
the proof of Chernoff bound to see why the proof carries over to negatively correlated random
variables).

Now, we describe how to achieve the above properties. Initially, let yi,j = xi,j for all edges. The
rounding algorithm will modify yi,j iteratively such that ∀i, j, yi,j ∈ {0, 1} at the end. The iteration
will satisfy two invariants:

1. For all (i, j) ∈ E, yi,j ∈ [0, 1]

2. Once yi,j rounds to 0/1, it never changes.

The algorithm is described in Algorithm 1:

Algorithm 1: Dependent Rounding on Bipartite Graph

1 Initially, let F = E;
2 while F 6= ∅ do
3 Find a simply cycle P (if there is no cycle, find a maximal path P ) in the subgraph

(A,B, F );
4 Color the edges of P alternately with black and white;
5 Let M1 ← all black edges, M2 ← all white edges;
6 α = min{ε > 0 : ((∃(i, j) ∈M1 : yi,j + ε = 1)

∨
(∃(i, j) ∈M2 : yi,j − ε = 0)};

7 β = min{ε > 0 : ((∃(i, j) ∈M1 : yi,j − ε = 0)
∨

(∃(i, j) ∈M2 : yi,j + ε = 1)};
8 With probability β/(α+ β), set yi,j = yi,j + α for all (i, j) ∈M1 and yi,j = yi,j − α for all

(i, j) ∈M2; with probability α/(α+ β), set yi,j = yi,j + β for all (i, j) ∈M1 and
yi,j = yi,j + β for all (i, j) ∈M2;

9 Remove all (i, j) ∈ P satisfy yi,j = {0, 1} from F and let Xi,j = yi,j

10 Return X;

It is easy to verify marginal distribution and degree-preservation holds in the algorithm.
See [3] for the proof of negative correlation part.

An illustration is shown in Figure 1.



0.5 + α
0.1-α

0.5 - β

0.1+β

β/(α+β)

α/(α+β)

Figure 1: Example of dependent rounding

3.2 Low congestion multi-path routing

We now come back to the low congestion multi-path routing problem. We could construct a special
bipartite graph for this problem.

Assume we are supposed to pick exactly k paths from each set Pi. And we are given a sequence
(x1, ..., xt) of t real numbers such that each xi ∈ [0, 1] and

∑
i xi = k.

First add a special node ”u”, and for each xi, add an edge (u, i) with value xi. Obviously
it is a bipartite graph with |A| = 1 and |B| = t and contains no cycle. It is not hard to verify
this case satisfy negative correlation. The first two edges are special case of the maximal path
described in Algorithm 1, denoting as ei, ej . Thus, if xi + xj > 1, with probability xj/(xi + xj)
set xi := 1, xj := xj − (1 − xi) and with probability xi/(xi + xj) set xi := xi − (1 − xj), xj = 1.
Similarly we could process the case when xi + xj < 1. See Figure 2 for illustration.

3.3 Throughput Maximization for Broadcast Scheduling

Definition 3.1 There is a set of pages P = {1, 2, ..., n} that can be broadcast by a broadcast server.
Assume that time is discrete; for an integer t, the time-slot t is the window of time (t−1, t]. At each
time slot, the broadcast server could broadcast exactly one page and all of the users could receive
that page. There are several users, each user query for page p in a certain time interval. Once the
user receives the page p from the broadcast server in corresponding time interval, the query will be
satisfied.

Design an algorithm to schedule the broadcast server in order to satisfy user queries as many
as possible.

This problem has been proven to be NP-hard. We give an approximation algorithm using
dependent rounding.

First we formulate it into an IP problem. Define Y t
p = 1 if the broadcast server broadcast page

p at time slot t, Xp,i = 1 if the ith query for page p is satisfied and Γi,p is the time slot interval of



0.5 0.6 …...

u

0.1 1 …...

u

1 0.1 …...

u

(a) xi + xj > 1

0.1 0.3 …...

u

0 0.4 …...

u

0.4 0 …...

u

(b) xi + xj < 1

Figure 2: Illustration for congestion problem

the ith query for page p. Then the problem can be described as follows:

maximize
∑

p,iXp,i

s.t
∑

t Y
t
p ≥ Xp,i ∀t ∈ Γi,p∑

p Y
t
p = 1 ∀t

Xp,i ∈ {0, 1} ∀t, i
Y t
p ∈ {0, 1} ∀t, p

We first show the approximation ratio by independent rounding.
Relax IP to LP, a trivial lower bound of fractional solution is

Pr[queryi,p is satisfied] = 1−
∏
t∈Γi,p

(1− Y t
p ) ≥ (1− 1

e
)Xp,i

To prove this lower bound, assume |Γi,p| = T , then

1−
∏
t∈Γi,p

(1− Y t
p ) ≥ 1− (1− Xp,i

T
)T

= 1− (1− 1

T/Xp,i
)T/Xp,i·Xp,i

≥ 1− (
1

e
)Xp,i ≥ (1− 1

e
)Xp,i

The last inequality is because of the following: Since Xp,i ∈ [0, 1], let g(Xp,i) = 1 − (1
e )Xp,i −

(1− 1
e )Xp,i. Observe that g(0) = g(1) = 0. Take the derivative of g(Xp,i), we find that g is always

nonegtive in [0, 1] (increases monotonically from 0, reaches its maximum and then decrease down
to 0, but never gets below 0). Therefore we have 1− (1

e )Xp,i ≥ (1− 1
e )Xp,i.

Utilizing random shifting we could improve the lower bound to 3
4 .

First construct a bipartite graph G = (U, V,E) as follows. ut ∈ U represents time slots t. For
each page p, we will group all the time slots that p is broadcast fractionally into some number mp



of windows and add mp vertices in v1
p, ..., v

mp
p . Choose a random variable z uniformly in [0, 1], then

the weight of edges can be derived by such an algorithm(Algorithm 2).

Algorithm 2: Construct the Bipartite Graph for A Particular p

1 Initially, let pu = 1, pv = 1, sum = 0;
2 forall the Y t

p do

3 if pv = 1 then
4 upper = z;

5 else
6 upper = 1;

7 if sum+ Y t
p ≥ upper then

8 add edge (upu, vpv, upper − Y t
p );

9 add edge (upu, vpv+1, Y
t
p − (upper − Y t

p ));

10 pv ← pv + 1;
11 sum← Y t

p − (upper − Y t
p );

12 else
13 add edge (upu, vpv, Y

t
p );

14 sum← sum+ Y t
p

15 pu← pu+ 1;

An instance of particular p is illustrated in Figure 3, in which Y t
p = [0.3, 0.3, 0.5, 0.8, 0.1, 0.3, 0.5].

0.3 0.3 0.5 0.8 0.1 0.3 0.5

0.7 1 1 0.1

0.3
0.3

0.1 0.4
0.6

0.2 0.1
0.3

0.4
0.1

Figure 3: Construction of bipartite graph of particular p

Use dependent rounding in the bipartite graph. If an edge (ut, v
i
p) is rounded to 1, then we

broadcast page p at time t.
Since ∀t,

∑
p Y

t
p = 1, according to Degree-preservation property, at each time at most one

page will be broadcast. Thus our algorithm return an available solution.
Now consider a certain query q = (p, t), if Xp,i = 1, in the worst case, the fractional solution will

span two adjacent windows. These two windows together fractionally provide one unit of page p.



Let random variable a denote the fraction of p provided by first windows. Actually, a is a uniform
random variable in [0, 1] which is ”random shifting” by z we picked at first. From Algorithm 2,

Pr[q is satisfied] =

∫ 1

0
max{a, 1− a}da =

3

4

If Xp,i < 1, besides the above case, the time interval of query may lie in a certain window,
therefore the query will be satisfied if and only if we round the edge of this window into the time
interval. Thus,

Pr[q is satisfied] =

∫ Xp,i

0
max{a,Xp,i − a}da+

∫ 1

Xp,i

Xp,idb ≥
3

4
Xp,i

4 More Geometry About LP

4.1 Standard Form

Every LP
Ax ≤ b (1)

could be rewritten as ”standard form” {
Ax = b
x ≥ 0

(2)

where form (2) indicating an intersection of a hyper plane and nonnegative cone. Assume that
there are m constrains in Ax = b and n variables in (2). For any vertex solution of the LP, we have

#zero ≥ n−m,

where #zero is the number of zero coordinates in the vertex solution. We do not prove this
rigorously here. See Figure 4 as an intuitive example in R3.

References

[1] Chernoff Bound (Wikipedia) : http://en.wikipedia.org/wiki/Chernoff_bound

[2] Random Algorithms : http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/

scribes/lec9.pdf

[3] Gandhi R, Khuller S, Parthasarathy S, et al. Dependent rounding and its applications to
approximation algorithms[J]. Journal of the ACM (JACM), 2006, 53(3): 324-360. Random
Algorithms : http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/

lec9.pdf

http://en.wikipedia.org/wiki/Chernoff_bound
http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15859-f04/www/scribes/lec9.pdf


(a) n=3, m=1, #zero = 2 (b) n=3, m=2, #zero = 1

Figure 4: An example in R3.


	Chernoff Bounds chernoff
	Independent Rounding
	Coin Flipping
	Discrepancy
	Congestion Minimization

	Dependent Roundingdependent
	On Bipartite Graph
	Low congestion multi-path routing
	Throughput Maximization for Broadcast Scheduling

	More Geometry About LP
	Standard Form


