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1 Preliminary

1.1 Duality

For the primal-dual pair of LPs:
maximize ⟨c, x⟩

s.t. Ax ≤ b

minimize ⟨y, b⟩

s.t. yTA = c

y ≥ 0

Proposition 1 (Weak Duality) For any feasible solution x for primal program and y for the
corresponding dual program, we have cTx ≤ yT b.

Proposition 2 (Strong Duality) Let x∗ and y∗ be the optimal solution for the primal and the
dual program (if exist) respectively, then ⟨c, x∗⟩ = ⟨y∗, b⟩.

1.2 Hitting Set Problem

Given a ground set of elements E, nonnegative costs ce for all elements e ∈ E, and subsets
T1, . . . , Tp ⊂ E, we want to find a minimum-cost subset A ⊂ E so that A has a nonempty in-
tersection with each subset Ti. We say that A hits each subset Ti.

In the former lecture, we have showed that there was a d-approximative solution by the primal-
dual method, where d = maxi |Ti|.

.

2 The feedback vertex set problem

2.1 Problem description

Given an undirected graph G(V,E), each node i is associated by a weight wi. Our goal is the find
the set S of minimum cost such that G(V/S) is acyclic.



2.2 Algorithm and Proof

The problem can be modeled by a LP problem:

min
∑
i∈V

wixi

s.t.
∑
e∈Ci

xi ≥ 1∀ cycle Ci,

xi ∈ {0, 1} ∀i ∈ V.

Here, xi means whether element i is picked in S. And we relax the constraint xi ∈ {0, 1} to xi ≥ 0.
Furthermore, any optimal solution x∗ to this LP will have x∗i ≤ 1, for all i ∈ V .

Note that the number of circles can be exponential based on the size of graph. So the above
LP may have exponential many constraints in the problem, which cannot be written down in
polynomial time.

However, we can use primal-dual method to avoid the exponential restriction. If we take the
dual of the resulting linear program, we obtain the following:

max
∑
C

yc

s.t.
∑

C:i∈C
yc ≤ wi,

yi ≥ 0.

Although the number of variables in the dual is exponential, only a polynomial number of these
will be considered about by our primal-dual algorithm 1 .

Our strategy is similar with hitting set algorithm. We take care that the dual solution y stays
feasible all the time and increase the x values towards making the primal solution feasible. When
the primal solution becomes feasible, we stop and have a solution.

And the cost our chosen solution is as follows:∑
i∈S

wi =
∑
i∈S

∑
C:i∈C

yC =
∑
C

|S ∩ C|yC .

That is, if we show that |S ∩C| ≤ α, then we can get a the solution
∑

i∈S wi ≤ α
∑

C yC ≤ αOPT .
However, there may be a circle C0 with n nodes in the graph which makes the |S ∩ C| quite

large. Thus we need choose the circles more carefully. For doing better, remove all the nodes which
are not contained in any circle (since these nodes’ corresponding variables can not appear in the
above linear programs. Namely we repeatedly delete all the node with degree 1 until the graph
contains only vertices of degree two or higher. And notice that for each circle, choosing the vertex
of least cost of it is enough for a feasible solution. Thus we can ignore other vertices of the circle;
the remaining vertices we call Interesting vertices.

Lemma 3 There is a circle with at most 4 log n Interesting vertices.



Proof: Namely from G we create a graph G′ consisting of only interesting vertex. Namely G′ has
no degree 1 vertices, and each vertex of degree 2 has two neighbors of degree more than 2. And
there is a one-to-one correspondence of cycles in G′ and G

Now we use BFS to find a cycle in G′. If we revisit a node on the breadth-first search tree, then
we immediately find a circle. And observe that in every 2 levels, there must be a level of the nodes
with degree all larger than 2. That is, in every other level the number of explored nodes increase
a factor of 2. Moreover, by depth 2 log2 n, we must revisit a node and namely we will have found
a cycle. 2

Algorithm 1: Feedback vertex algorithm

Initially, let S = ∅, I = {Interesting vertices};1

while S is not feasible do2

Find C such that {C ∩ I} < 4 log n;3

Increasing yc until ∃i ∈ I,
∑

C:i∈C yc = wi.;4

S = S + {i};5

Remove i from the graph.;6

Repeatedly remove the vertices of degree one from the graph.;7

Return S;8

Then ∑
i∈S

wi =
∑
i∈S

∑
C:i∈C

yc

=
∑
C

yc|A ∩ C|

≤
∑
C

yc|I ∩ C|

≤ O(log n)
∑
C

yC .

3 Shortest path problem

3.1 Problem Description

Given an undirected graph G = (V,E), nonnegative costs ce ≥ 0 on all edges e ∈ E, and a parit of
distinguished vertices s and t. The goal is to find the minimum-cost path from s to t.

3.2 Algorithm and Proof

Denote δ(S) by the set of all edges that have one endpoint in S and the other endpoint not in S.
Let xe represent whether e is chosen in the shortest path. The problem can be modeled as follows:

min
∑
e

cexe



s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ⊂ V, s ∈ S, t ̸∈ S,

xe ∈ {0, 1}, ∀e ∈ E

For a feasible solution, consider about the graph G′ = (V, {e|xe = 1}). The first constraint means
that for every s − t cut S in the graph G’, there must be one edge in δ(S). Namely the first
constraint guarantees that the minimum s− t cut is at least 1. By the max-flow min-cut theorem,
we know there must be 1−unit flow from s to t, that is there is a path from s to t in G′.

Similarly with the feedback vertex problem, the number of constraints is exponential of the size
of graph. However, it does not matter that we use the primal-dual method. Relax the integrality
constraints to xe ≥ 0, e ∈ E and take the dual, we obtain the following:

max
∑

S:s∈S,t̸∈S
yS

s.t.
∑

S:e∈δ(S),s∈S,t̸∈S

yS ≤ ce,

yi ≥ 0.

Algorithm 2: Shortest Path algorithm

Initially, let A = ∅, l = 0;1

while A is not feasible do2

l = l + 1;3

Find S as the connected component of (V,A) containing s;4

Increasing yS until ∃el ∈ I,
∑

S:e∈δ(S) yS = cel .;5

A = A+ {el};6

Reverse deletion: for j from l to 1 do7

if A− {ej} feasible then8

A = A− {ej}9

Return A;10

∑
e∈A

ce =
∑
e∈A

∑
S:e∈δ(S)

yS

=
∑

S:s∈S,t̸∈S
ys|A ∩ δ(S)|

For all yS ̸= 0, we know yS can increase only when S become a connected component of the edges
picked by algorithm at some time point. And after the reverse deletion, the edges of A only can
be in a path. That is, by max flow min cut theorem, the δ(S), as a s− t cut, contains only one of
these edges. Namely |A ∩ δ(S)| = 1.

Note that the algorithm is just Dijkstra’s algorithm.



4 The Steiner forest

Given graph G(V,E) with l pairs (si, ti). Each edges has a cost ce. Find a set of edges such that
si can connect ti.

4.1 Algorithm and Proof

Let Si be the subsets of all possible si − ti cut; that is Si = {S ⊂ V : |S ∩ {si, ti}| = 1}.

min
∑
e

cexe

s.t.
∑

e∈δ(S)

xe ≥ 1, ∀S ⊂ V : S ∈ Si for some i,

xe ∈ {0, 1}, ∀e ∈ E.

The constraints guarantee that for an si − ti cut S, there will be a chosen edge from δ(S). By a
similar discussion in the Shortest Path problem, it means that there is a path connecting si with
ti.

Also relax the integrality constraints to xe ≥ 0, e ∈ E and take the dual as follows:

max
∑

S∈∪i∈[l]Si

yS

s.t.
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

yS ≥ 0, S ∈ ∪i∈[l]Si.

Algorithm 3: Steiner Forest algorithm

Initially, let A = ∅, l = 0 (l is a counter);1

while A is not feasible do2

l = l + 1;3

Let Cl = {S:S is a connected component of (V,A) separating some (si, ti)};4

Increasing yS for each S in Cl by ∆i simultaneously until ∃ex ̸∈ A,
∑

S:ex∈δ(S) yS = cex .;5

A = A+ {ex};6

Reverse deletion: for j from l to 1 do7

if A− {ej} feasible then8

A = A− {ej}9

Return A;10

Then ∑
e∈A

ce =
∑
e∈A

∑
S:e∈δ(S)

yS

=
∑
S⊂V

yS |A ∩ δ(S)|.



Concerning every iteration of the algorithm, the dual variable yS can be increased with ∆i only
when S belongs to Ci. That is,

yS =
∑

i:S∈Ci

∆i,
∑
S⊂V

yS =

l∑
i=1

|Ci|∆i.

Thus,

∑
e∈A

ce =
∑
S⊂V

 ∑
i:S∈Ci

∆i

 |A ∩ δ(S)|

=
l∑

i=1

∑
C∈Ci

|A ∩ δ(C)|∆i.

To get an approximating ratio about the solution , we introducing the following lemma:

Lemma 4 ∑
C∈Ci

|A ∩ δ(C)| ≤ 2|Ci| ∀i ∈ [l].

By the Lemma, we know the cost of our solution
∑

e∈A ce is no larger than
∑l

i=1 |Ci|∆i =
2
∑

S⊂V yS ≤ 2OPT . Namely, the above algorithm is a 2-factor approximation algorithm to the
Steiner forest problem. Now we back to proof the Lemma.
Proof: For a fixed i ∈ [l], the edge ei is added to A. Assume at this time the set of chosen edges
e1, . . . , ei as Ai. Let Ti = A−Ai. Observe that G(V,Ai ∪ Ti) is a forest.

Consider about the contracting way for G = (V,A) such that contracting each connected com-
ponent of G = (V,Ai) to a new vertex. Assume the set of vertices in the new graph G′ as V ′. Then
the new graph G′ = (V ′, Ti) is also a forest. Since from no edges in the graph G = (V, ∅), any
time the algorithm add an edge to the graph , it has at most one endpoint in any given connected
component in G. Namely at any time, the graph will remain a forest.

Further, color the new vertices added after the contraction with the red color and other vertices
with the blue color. Let R denote the set of red vertices and B the blue vertices v. The desired
inequality reduces to prove ∑

v∈R
deg(v) ≤ 2|R|.

Observe that no blue vertex has degree less than 2. First of all, ignore blue vertex of degree
0. Assume by contradiction that there is a blue vertex v of degree 1 and the incident edge is e.
Then the edge e must be on a path from si to ti for some i otherwise e will be delete from A when
the algorithm do the reverse deletion. Thus v must be the endpoint of the path in the contracting
graph G′, namely be a red vertex. It is a contradiction. Thus no blue vertex has degree less than
2.



Furthermore we have the following:∑
v∈R

deg(v) =
∑
v∈V ′

deg(v)−
∑
v∈B

deg(v)

≤ 2|V ′| − 2−
∑
v∈B

deg(v) since G′(V ′, Ti) is a forest

≤ 2|V ′| − 2|B|
≤ 2|R|.

2

5 Facility location Problem

5.1 Problem description

Given a finite set C of customers (or clients); and a finite set F of potential facilities. Then there
is a fixed cost fi ∈ R+ for opening each facility i ∈ F and a service cost cij ∈ R+ for each i ∈ F
and j ∈ C. we look for: a subset S of facilities (called open) and an assignment σ : C → S of
customers to open facilities, such that the sum of facility costs and service costs

∑
i∈S fi+

∑
j→i cij

is minimum.
• Discussion
For the above description, we can show the approximating ration is only Θ(logn).
Here we only show why the lower bound Ω(logn) holds. It is easy to see that the Set Covering

Problem is a special case of the Facility Location Problem: Given an instance (U ;S; c) as above,
define C := U,F := S, fS = c(S) for S ∈ S, and let the service cost cij be zero for j ∈ S and 1 for
j ∈ UnS. Therefore the best we can hope for is a logarithmic approximation factor.

A

B

C

D

The follows, we only consider about the special form of the Facility location Problem: Metric
Facility location Problem where the clients and factories are points in metric space and the assign-
ment cost cij is the distance between factory i and client j. In particular, given clients A,C and
factories B,D such that

cCB ≤ cAB + cAD + cCD.

In this note, we only give a 3-approximating algorithm for the Metric facility location Problem
by Prime-Dual method.

5.2 LP

min
∑

i∈F ,j∈C
cijxij +

∑
i∈F

fiyi



s.t.
∑
i∈F

xij ≥ 1 ∀j ∈ C

yi − xij ≥ 0

yi, xij ∈ [0, 1]∀i ∈ F , j ∈ C

Here, xij denote whether client j has been assigned to facility i and yi denote whether facility i is
open. The first constraint make sure that each client must be assigned to a facility and the second
constraint guarantees that the facility which is assigned by a client must be open.

Also we relax the prime LP by dropping the integrality constraints and take the dual:

max
∑
j∈C

αj

s.t.
∑
j∈F

βij ≤ fi ∀i ∈ F ,

αj − βij ≤ cij∀i ∈ F , j ∈ C

αi, βij ∈ [0, 1]

Here we have an intuition for the dual. The dual variable βij is the facility j allocate the additional
cost for client i. The dual variable αj can be seen as the amount that each client j will pay. And
if βij > 0, we say the client j contributes to factory i. For a fixed factory i, there is a constraint∑

j βij ≤ fi guarantee that the factory cannot receive the contribution from all clients exceed fi.
And for a fixed client j, there are constraints αj − βij ≤ cij∀i ∈ F guarantee that the client j only
can pay the smallest value among the possible choice cij + βij .

The goal is to max the sum of the payment of clients under the above constraint.
Assume the optimal solution of the dual is α∗

j , β
∗
ij . Observe that given dual variables a∗, we can

get a feasible solution for β such that: βij = max{0, α∗ − cij}.
If α∗

j > cij for some factories j, then βij > 0. Moreover the difficult of the approach is that
the client j can arbitrary choose many facilities j where αj = βij + cij whereas a feasible solution
demands each client must choose only one factory. Thus for getting a solution, we should choose
a subset of facilities to open more carefully. In the following algorithm, the reverse deletion part
guarantee that the subset they open is such that no open facility is within a path of length two of
any other open facility. Namely no client can contribute more than one factory in the subset.



Algorithm 4: Facility location algorithm

Initially, let T = ∅,S = C; σ(j) = 0,∀j ∈ C; //σ is the assignment of customers to facilities1

while S ̸= ∅ do2

Increase αj for all j ∈ S uniformly and when αi > cij , increase all the wij uniformly to3

maintain feasibility until some i ̸∈ T such that
∑

j βij = fi or some i ∈ T such that
∃j ∈ S : αi − βij = cij ;
if some i ∈ T, j ∈ S such that αi − βij = cij then4

S = S − {j};5

σ(j) = i;6

if some i ̸∈ T such that
∑

j βij = fi then7

T = T + {i};8

S = S − {j|βij > 0};9

σ(j) = i,∀j : βij > 010

Let T ′ = ∅;σ′ : σ′(j) = 0,∀j ∈ C;11

Reverse deletion: while T ̸= ∅ do12

Pick i ∈ T ; T ′ = T ′ + {i};13

for all j ∈ C do14

//If some client j contributes to h and i, we guarantee that the assignment is from15

the client j to the picked factory i;
if σ(j) ∈ {h ∈ T |∃j ∈ C, βij > 0 ∧ βhj > 0} then16

Let σ′(j) = i;17

// And remove all the factories h if some client j contributes to h, i;18

T = T − {h ∈ T |∃j ∈ C, βij > 0 ∧ βhj > 0};19

Return T ′, σ′;20

Lemma 5 If the client j which σ(j) does not belong to T ′, then after the reverse deletion we can
find a σ′(j) ∈ T ′ such that:

cσ′(j)j ≤ 3αj j : σ(j) ̸∈ T ′.

Proof: The algorithm stops increasing αj only when we find some σ(j) ∈ T such that αj =
βσ(j)j + cσ(j)j . Obviously σ(j) ̸∈ T ′ otherwise σ(j) ∈ T ′. Then the σ(j) only can be removed in
the reverse deletion, which means there is some j′ ∈ C such that βσ(j)j′ , βσ′(j)j′ > 0. Therefore
αj′ = βσ(j)j′ + cσ(j)j′ > cσ(j)j′ , αj′ > cσ′(j)j′ and also αj = βσ(j)j + cσ(j)j ≥ cσ(j)j .

j′

σ′(j)

j

σ(j)

By the metric property, we know

cσ(j)j ≤ cσ(j)j′ + cσ′(j)j′ + cσ′(j)j ≤ αj + 2αj′ .



We would now like to show aj′ ≤ aj , therefore we can get cσ(j)j ≤ 3aj .
observe that the algorithm stops incensing αj only when the algorithm decides the value of

σ(j). Namely at that time, there are two cases: 1.σ(j) is already in T ;2.σ(j) is added to T by∑
k∈C βσ(j)k = fσ(j) being tight. For case 1: since βσ(j)j′ > 0, the algorithm must stop increasing

αj′ before σ(j) has been already added to T . For case 2: the αj , αj′ will stop increasing at the
same time. Thus αj′ ≤ αj , as claimed. 2

Notice that there are two assignment functions σ, σ′ in our algorithm. The latter one is the
assignment we finally get. The form one is decided by some tight constraints by increasing αj , βij .
That is, for some j ∈ C, σ(j) is the value that αj = βσ(j)j + cσ(j)j . And for each picked factory i
in T ,

∑
j:σ(j)=i βij = fi.∑

j∈C
cσ′(j)j +

∑
j∈T ′

fj =
∑
i∈T ′

(fi +
∑

j:σ′(j)=i

cij)

=
∑
i∈T ′

(fi +
∑

j:σ(j) ̸∈T ′,σ′(j)=i

cij +
∑

j:σ(j)=i

cij)

=
∑
i∈T ′

∑
j:σ(j) ̸∈T ′,σ′(j)=i

cij +
∑
i∈T ′

∑
j:σ(j)=i

(βij + cij) (By the above discussion.)

≤
∑
i∈T ′

∑
j:σ(j) ̸∈T ′,σ′(j)=i

3αj +
∑
i∈T ′

∑
j:σ(j)=i

αj

≤ 3
∑
i∈T ′

(
∑

j:σ(j)̸∈T ′,σ′(j)=i

aj +
∑

j:σ(j)=i

aj)

= 3
∑
i∈T ′

αi

≤ 3OPT
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