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1 Preliminaries

In this section, we review some important concepts related to convex optimization.

1.1 Convex Program

Before stating the definition of convex program, we need the following definitions.

Definition 1 (Convex Set) A set S is convex, if

∀x, y ∈ S, θ ∈ [0, 1], θx+ (1− θ)y ∈ S

Definition 2 (Convex Function) A function f : D → R is convex (where D ⊆ Rn is the domain
of this function), if D is convex and

∀x, y ∈ D, θ ∈ [0, 1], f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y)

Moreover, if −f is convex, f is concave.

Definition 3 (Convex Program) An optimization problem on the form

inf f(x)

subj.t. gi(x) ≤ 0, i = 1, . . . ,m

is convex if the functions f, g1, . . . , gm are convex.
Alternatively, the following optimization problem is convex, if f0, . . . , fm are convex and h1, . . . , hk

are affine.

inf f0(x) (1)

subj.t. fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , k

To introduce two important examples, we need the following notion.

Definition 4 (Positive Semidefinite) 1 An n by n matrix P is positive semidefinite, denoted by
P � 0, if it is symmetric (P ∈ Sn) and

∀x ∈ Rn, xTPx ≥ 0

Notice that P � P ′ is equivalent to P − P ′ � 0.

1There are many important equivalent definitions for this notion. http://en.wikipedia.org/wiki/

Positive-definite_matrix#Characterizations

http://en.wikipedia.org/wiki/Positive-definite_matrix#Characterizations
http://en.wikipedia.org/wiki/Positive-definite_matrix#Characterizations


Example 5 (Quadratic Program) Given P � 0.

min
1

2
xTPx+ qTx+ r

subj.t. Gx ≤ h
Ax = b

Example 6 (Semidefinite Program(SDP)) 2 Given G,F1, . . . , Fn ∈ Sk.

min cTx

subj.t. x1F1 + · · ·+ xnFn +G � 0

Ax = b

1.2 Duality

Definition 7 (Lagrangian) The Lagrangian according to convex program (1) is

L(x, λ, ν) = f0(x) +
∑
i

λifi(x) +
∑
j

νjhj(x)

Definition 8 (Lagrange Dual) The Lagrange dual problem of the primal (1) is

max g(λ, ν) (2)

subjt.t. λ � 0

where g(λ, ν) is the Lagrange dual function defined as follows,

g(λ, ν) = inf
x∈D

L(x, λ, ν), D =
⋂

domfi
⋂

domhj

Suppose the OPTs of the primal and the dual are p∗ and d∗ respectively, the following property
called weak duality always holds.

d∗ ≤ p∗

Meanwhile, the following strong duality does not hold for arbitrary convex programs.

d∗ = p∗

An important necessary condition of strong duality is provided as follows.

Definition 9 (Slater’s Condition[2]) Suppose that fi1’s are affine functions and fi2’s are convex
functions, then Slater’s condition is

∃x ∈ relintD, s.t. fi1(x) ≤ 0, fi2(x) < 0, Ax = b

Theorem 10 [2] Slater’s condition implies strong duality.

2For Goemans-Williamson MAX-CUT approximation algorithm, the famous application of SDP, please see [1].



1.3 Unconstraint Convex Programs

For unconstraint convex programs, we have the following observation, which actually applies to all
nonlinear programs.

Lemma 11 (Optimality Condition) The following two statements apply to all nonlinear pro-
grams.

1. x0 is a minimum point =⇒ ∇f(x0) = 0.

2. If f ∈ C2, then

∇f(x0) = 0, ∇2f(x0) � 0 =⇒ x0 is a minimum point

Now we give a brief proof to the second statement.

Proof: Since f ∈ C2 and ∇2f(x0) � 0, there exists r > 0 such that ∀x ∈ B(x0, r), ∇2f(x) � 0.
Using Taylor expansion with Lagrange remainder at any x ∈ B(x0, r),

f(x) = f(x0) + (x− x0)T∇f(x0) +
1

2
(x− x0)T∇2f(ξL)(x− x0) ≥ f(x0)

where ξL is some point between x and x0. 2

1.4 Strongly Convex Function

Finally, we introduce the last notion in this section, which is very important for the upcoming
sections.

Definition 12 (Strongly Convex Function) 3 A function f is strongly convex with parameter
m > 0, if for all x, y in its domain, and θ ∈ [0, 1].

f
(
θx+ (1− θ)y

)
≤ θf(x) + (1− θ)f(y)− 1

2
mθ(1− θ)‖x− y‖22

Specially, for twice continuously differentiable function f , it is strongly convex with parameter m,
if and only if for all x in its domain, ∇2f(x) � mI.

2 Gradient Descent

In this section, we briefly introduce the gradient descent method which is widely used to find the
nearest local minimum of a differentiable function. This method basically starts at a given point
x0, and repeats the following iteration until some terminal condition is satisfied.

xi+1 = xi + t∆x = xi − t∇f(xi)

where t is the step size.
Two typical ways to decide the step size are listed here.

3See http://en.wikipedia.org/wiki/Convex_function#Strongly_convex_functions.

http://en.wikipedia.org/wiki/Convex_function#Strongly_convex_functions


1. Exact line search. Choose t to be the optimal value that minimizes f(xi+1), i.e.,

t = arg min
s>0

f(xi + s∆x)

2. Backtrack line search, with parameters α, β ∈ (0, 1).

This method aims to find a proper t such that the point
(
xi+1, f(xi+1)

)
is below the line

f(xi) +αt∇f(xi). It works by first guessing the value of t, and if the t does not work, shrink
it by factor β each time until the proper value is found.

2.1 Condition Number

Condition number, denoted by κ, is an important notion required for further discussion on conver-
gence rate of gradient descent. The condition number of a matrix A is

κ(A) =
λmax(A)

λmin(A)

Similarly, the condition number of a set C is

κ(C) =

(
max width

min width

)2

=
sup‖q‖2=1

(
supz∈C q

Tz − infz∈C q
Tz
)2

inf‖q‖2=1

(
supz∈C q

Tz − infz∈C qTz
)2

Consider the following example.

Example 13 (Conditional Number of an Ellipsoid) Suppose we have the following ellipsoid
defined by a matrix A � 0.

E =
{
x|(x− x0)TA−1(x− x0) ≤ 1

}
Then

κ(E) =
sup‖q‖2=1 ‖A1/2q‖2

inf‖q‖2=1 ‖A1/2q‖2
=
λmax(A)

λmin(A)
= κ(A)

Since conditional on ‖q‖ = 1,(
sup
z∈E

qTz − inf
z∈E

qTz
)2

= 4 sup
z∈E

(
qT(z − x0)

)2
= 4 sup

z∈E
‖z − x0‖22

= 4 sup
{
‖y‖22|yTA−1y ≤ 1

}
=

4

λmin(A−1)

= 4λmax(A)



2.2 Convergence Rate

Theorem 14 (Convergence Rate) Gradient descent method with exact line search returns xk
such that f(xk)− p∗ ≤ ε after k iterations. The convergence rate k is bounded as

k = O

(
log
(
f(x0)− p∗

)
/ε

m/M

)
,

where x0 is the start point, p∗ is the OPTof the unconstraint convex program, and m/M is the
condition number.

Moreover, the objective function f is strongly convex in its domain with parameter m, and
M > 0 is some constant such that ∇2f(x) �MI for all x in the sublevel set Cf(x0).

Proof: Firstly, by applying Taylor expansion with Lagrange remainder at x and the strongly
convexity of f , we get

f(y) = f(x) + (y − x)T∇f(x) +
1

2
(y − x)T∇2f(ξ)(y − x)

≥ f(x) + (y − x)T∇f(x) +
m

2
‖y − x‖22 (3)

Let x0 be the point such that ∇f(x0) = 0, and we get

f(y) ≥ f(x0) +
m

2
‖y − x0‖22,

which implies that when ∀y ∈ Cf(x0), ‖y − x0‖ is upper bounded by a finite value. In other words,
the sublevel set Cf(x0) is bounded and hence M > 0 is also guaranteed to be finite.

By choosing y∗ to be the minimizer of (3), i.e., y∗ = x− 1
m∇f(x), we have

f(y) ≥ f(x) + (y∗ − x)T∇f(x) +
m

2
‖y∗ − x‖22 = f(x)− 1

2m
‖∇f(x)‖22 (4)

Letting y = x0, the inequality above implies that the smaller ‖∇f(x)‖2 is, the closer to optimal
f(x) is.

Now we come back to the iteration of the method. By the definition of exact line search,

f(xi+1) = f
(
xi + ti∇f(xi)

)
≤ f

(
xi −∇f(xi)/M

)
≤ f(xi)−

1

2M
‖∇f(xi)‖22

The last inequality is based on the following, which can be proved similarly with (3).

f(y) ≤ f(x) + (y − x)T∇f(x) +
M

2
‖y − x‖22

Combining with (4),

‖∇f(xi)‖22 ≥ 2m
(
f(xi)− p∗

)
=⇒ f(xi+1)− p∗ ≤

(
1− m

M

)(
f(xi)− p∗

)



Therefore

f(xk)− p∗ ≤
(

1− m

M

)k(
f(x0)− p∗

)
To guarantee that f(xk)− p∗ ≤ ε, we need the number of iterations to be

k = O

( log ε
f(x0)−p∗

log
(
1− m

M

)) = O

(
log
(
f(x0)− p∗

)
/ε

m/M

)
,

Notice that we use the approximation that log(1− z) ≈ −z when |z| is small. 2

2.3 Steepest Descent

Steepest descent is a more general descent method. In stead of simply choosing ∆x to be −∇f(x),
steepest descent chooses ∆x w.r.t. some norm ‖ · ‖, i.e.,

• for normalized case,
∆xnsd = arg min

‖v‖=1
vT∇f(x),

• and for unnormalized case.
∆xsd = ‖∇f(x)‖∗ ·∆nsdx.

Recall the ‖ · ‖∗ is the dual norm of ‖ · ‖,

‖z‖∗ = sup
‖w‖≤1

zTw

Example 15 (Quadratic Norm) Consider quadratic norm defined by a positive define matrix
P .

‖z‖P =
(
zTPz

)1/2
=
∥∥P 1/2z

∥∥
2
,

and
‖z‖∗ =

∥∥P−1/2z∥∥
2
.

Hence

∆xsd = ‖∇f(x)‖P−1 · arg min
‖v‖P=1

vT∇f(x)

= −
(
∇f(x)TP−1∇f(x)

)1/2 · arg max
‖v‖P=1

vT∇f(x)

= −
(
∇f(x)TP−1∇f(x)

)1/2 · P−1∇f(x)(
∇f(x)TP−1∇f(x)

)1/2
= −P−1∇f(x)

Notice that vT∇f(x) = ‖∇f(x)‖P−1 and ‖v‖P = 1.
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