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1 Review of Last Lecture

1.1 Steepest descent method

The (unnormalized) gradient of Steepest descent method is defined as

∆sd = ‖∇f‖∗∆nsd

where the normalized gradient

∆nsd = arg min
v
{∇f(x)v|‖v‖ ≤ 1}

and the ‖ · ‖∗ denote the dual norm.
For a positive matrix A, we define matrix norm w.r.t. A as

‖x‖2A = xTAx

which can be used in the dual norm.

2 Newton’s Method

2.1 definition

The gradient of Newton’s Method is defined as

∆xnt =
(
∇2f(x)

)−1 · ∇f(x)

which actually is a special case of steepest descent if we use matrix norm w.r.t. ∇2f(x), i.e., the
Hessian matrix of f at this point.

Notice that Newton’s method sometimes may not converge1.
The intuition of Newton’s Method is to approximate the function f by a quadratic function f̂ ,

then compute the minimize of f̂ to get the new point.

Example 1 (Application on Quadratic Function) Suppose f is a quadratic function ,

f̂(x+ v) = f(x) +∇f(x)v +
1

2
vT∇2f(x)v

Then
∇f̂(x+ v) = 0 =⇒ ∇f(x) +∇2f(x)v = 0, v = −

(
∇2f(x)

)−1∇f(x)

Which means that we only need 1 iteration to get optimal.

Remark 2 Newton’s method is a descent method, since the inner product < ∆xnt,∇f(x) >=
−∇fT (x)∇2f(x)∇f(x) is guaranteed to be negative.

1See http://en.wikipedia.org/wiki/Newton’s_method#Failure_analysis.

http://en.wikipedia.org/wiki/Newton's_method#Failure_analysis


2.2 Affine Inveriance

Consider f : Rn → R, and an invertible linear transformation T ∈ Rn×n.

f(y) = f(Ty)

Where T is a n× n intertable matrix.
It is easy to verify the following

∇f(y) = TT∇f(x), ∇2f(x) = TT∇2f(x)T,

and the step size of f at point x is

∆ynt = −
(
TT∇2f(x)T

)−1 · (T∇f(x)
)

= T−1∆xnt

where x = Ty.

Remark 3 Since computing the term (∇2f(x))−1 is usually a difficult job, an improvement of
Newton’s Method called Quasi-Newton is proposed.

3 Convergence Analysis

3.1 Convergence of Newton’s method

Based on the following assumptions,

mI � ∇2f �MI, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

the implement of Newton’s method consists of the following two phases.

• Phase 1. ‖∇f‖ > η, then f(xk+1)− f(xk) ≤ −γ, where γ = 2m2/L2 and 0 < η < m2/L.

• Phase 2. Otherwise,
L

2m2

∥∥∇f(xk+1)
∥∥ ≤ ( L

2m2

∥∥∇f(xk)
∥∥)2

Recall that in last class we mentioned that for strongly convex function f ,f(x)−p∗ ≤ 1
2m‖∇f(x)‖2,

which means that f(x) is close to optimal when its gradient is small.
Then the number of iterations is

f(x0 − p∗)
γ

+ log log
(ε0
ε

)
Self-concordance is

f(x0 − p∗)
2

+ log log
(1

ε

)
Where 2 is something irrelevant with γ

Note that the convergency result was for Newton’s direction combined with backtrack line search(See
notes in last class),not for the plain Newton step written in the board of this class.

Remark 4 In real application, since phase 2 performs large better than phase 1, one can first use
other gradient descent method, and then use Newton’s method when ‖∇f‖ is sufficiently small.



3.2 Convergence of Gradient Descent (Constant Step Size)

Assumption 5 (Lipschitz gradient)

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖

Suppose that ε ≤ tk ≤ (2 − ε)/L, where L is the coefficient in the Lipschitz assumption, then we
have

Lemma 6 (Descent Lemma)

f(xk+1)− f(xk) ≤ ∇f(xk)tk
(
−∇f(xk)

)
+
L

2

∥∥tk∇f(xk)
∥∥2

Proposition 7 The following four conditions are equivalent. 2

1. Lipschitz gradient.

2. Descent Lemma

3. Coercivity. (
∇f(x)−∇f(y)

)T
(x− y) ≤M‖x− y‖2

4.
‖∇2f‖ ≤ L

Then we prove the convergence of {xk} , with the number of iterations in O(...).

Proof: Using the lemma above,

f(xk+1)− f(xk) ≤ ∇f(xk)tk
(
−∇f(xk)

)
+
L

2

∥∥tk∇f(xk)
∥∥2

=
∥∥∇f(xk)

∥∥2(−tk +
L

2
t2k)

≤
∥∥∇f(xk)

∥∥2(−tk + tk ·
2− ε

2
)

= − ε
2
· tk
∥∥∇f(xk)

∥∥2
≤ −ε

2

2

∥∥∇f(xk)
∥∥2

By convexity of f ,

f(xk)− f∗ ≤ 〈∇f(xk), xk − x∗〉
≤ ‖∇f(xk)‖ · ‖xk − x∗‖
≤ ‖∇f(xk)‖ ·R

where R is the radius defined as R = maxf(x)≤f(x0) ‖x− x∗‖.
2The lemma is recommended to prove in the order 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1, left as homework.



Let φk = f(xk)− f∗, then

φk − φk+1 ≥
ε2

2

∥∥∇f(xk)
∥∥2 ≥ ε2

2
·
φ2k
R2

Therefore

1

φk+1
− 1

φk
=
φk − φk + 1

φkφk+1
≥ φk − φk + 1

φ2k
≥ ε2

2R2
=⇒ 1

φk
≥ 1

φ0
+
kε2

2R2

where φ0 = f(x0)− f∗ ≤ LR.
So, we get that k is the order in O(1δ ) to satisfy φk ≤ δ. 2

3.3 Lower Bounds for First Order Methods

Assume that

• f is strongly convex with parameter l, i.e. ∇2f � lI.

• The initial point x0 = 0.

• (First order)
xk ∈ Span{x1, . . . , xk−1,∇f(x1), . . . ,∇f(xk−1)}

Then we show that the convergence rate of f(x) = xTAx− bT is in Ω
(√
κ log 1

δ

)
, where

A = αA0 + βI =
L− l

4



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 0 −1 2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 2


+ lI, b = e1

and dimension d→∞.

Claim 8 Suppose Ax∗ = b and x∗ = (u1, . . . , uk, . . . , ud), then

ui =

(√
κ− 1√
κ+ 1

)i
Key observations,

• x0 = 0, and ∇f(x0) = b.

• x1 ∈ Span{b}.

• x2 ∈ Span{Ab, b}.

• x3 ∈ Span{A2b, Ab, b}.



•
...

• xk ∈ Span{Ak−1b, . . . , Ab, b}. (Krylov subspace)

Also notice that xk must be in the form that only the first k terms are non-zero.
Therefore,

‖x∗ − xk‖2 ≥
d∑

j=k+1

u2j
d→∞

= u2(k+1)‖x∗ − x0‖2

where u = (
√
κ− 1)/(

√
κ+ 1). Hence

‖f(xk)− f(x∗)‖ ≥ l

2
‖xk − x∗‖2 ≥

l

2
u2(k+1)‖x0 − x∗‖2

which implies that k = Ω
(√
κ log 1

δ

)
to satisfy ‖f(xk)− f(x∗)‖ < δ.

4 Conjugate Gradient

Goal: minimize
xTAx− bTx

given that A � 0.
Suppose that K = Span{b, Ab, . . . , Akb}, and {v0, . . . , vk} is a basis of K.
Then the question is equivalent to

Finding the best vector α in K that minimizes∥∥∥x∗ −∑
i

αivi

∥∥∥
A

Observation.
If vi and vj are A-orthogonal to each other, i.e., vTi Avj = 0, ∀i 6= j, then∥∥∥x∗ −∑

i

αivi

∥∥∥2
A

=
∑
i

(α2
i v

T
i Avi − 2αib

Tvi) + ‖x∗‖2A

(all the cross terms viAvj(i 6= j) disappear)
which implies that αi = bTvi/‖vi‖2A.

Key idea, we can construct the basis {v0, . . . , vk} which are A-orthogonal to each other effi-
ciently step by step, i.e.,

Span{v0, . . . , vi} = Span{b, Ab, . . . , Aib} denote= Ki
Claim 9 Avi−1 is A-orthogonal to v0, . . . , vi−3.

One-line proof : for j ∈ [i−3], Avj ∈ Kj+1, which is A-orthogonal to vi−1. Hence vTi−1AAvj =
0 = (Avi−1)

TAvj , which prove the claim. 2

Therefore in each iteration, we only need to A-orthogonalize Avi−1, vi−1 and vi−2 to obtain
vi. Since by construction vi can write as a linear combination of Avi−1, vi−1, vi−2, and by Claim
9 and induction Avi−1, vi−1, vi−2 are A-orthogonal to v0, . . . , vi−3, we have vi is A-orthogonal to
v0, . . . , vi−3, which proves the Key idea.
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