Notes on Generalization Error Bounds

1 Preliminaries

We view a dataset of size n as a collection of n loss functions {f; : ¢ € [n]}, where f; denotes the
loss of a certain parameter configuration on the i-th sample. We make the following assumption
on the loss functions.

Assumption 1.1. FEach loss function f; is differentiable, C'-bounded and L-lipschitz.

The following lemma allows us to reduce the proof of algorithmic stability to the analysis of a
single update. Let KL (P, @) denote the KL-divergence from @ to P.

Lemma 1.2. Let (Xo,X1,...,X7) and (X(, X1, ..., X}) be two Markov chains such that for each
te€{0,1,...,T}, X; and X| have the same support. Suppose that the following two conditions hold:

1. Xo and X, follow the same distribution.
2. For any t € [T] and any zo in the support of X;—1, KL (X¢|Xy—1 = w0, X{|X[_; = z0) < .
Then it holds that

KL (X7, X}) Zat

Proof. The chain rule of KL-divergence implies that

KL (X4, X;) <KL (Xo—1, Xy), (Xi_1, X}))
=KL (X1, X 1)+ B [KL (X Xem = 2, X{| X} = a)]

~Xt-1

<KL (X¢—1,X{_1) + .

A summation over t = 1,2,...,T proves the lemma. O

2 Stability Bound for Langevin Monte Carlo

We define Langevin Monte Carlo (LMC) on dataset S = {f; : i € [n]} as the following procedure:
Xt_|_1 <— Xt — ’)/V?(Xt) + Ct-

Here + is a step size and f = %Z?:l fi denotes the average loss on the samples in S. Noise (; is
drawn from the standard Gaussian distribution N(0, ).

We consider two datasets S and S’ of size n that differ by at most one loss function. Let f and
7 denote the average loss on samples in S and S’, respectively. Let random variables X; and X}
denote the parameter after ¢ steps of LMC on datasets S and S’, respectively.

The following lemma bounds the contribution of each iteration in LMC to the KL-divergence.



Lemma 2.1. Under Assumption 1.1, for any time step t and xq in the parameter space,

4’}/2L2

KL (X¢| X¢—1 = w0, X{|X|_| = m) < p

Proof. Let pn = xg — vV f(z0) and i/ = 20 — WV?I(xO). Since f and 7 differ by a single L-lipschitz

loss function, -
[Vf(2) = Vi@)| < =—.

n

It then follows that [|u — p/| < % Since the conditional distributions of X; and X| are given by
N(p, 1) and N (i, 1),

9 472[12
KL (Xy| X¢—1 = w0, X{|X{ | = x0) < ||u—p||” < P
O
By Lemmas 1.2 and 2.1,
42 L2T
KL (XT,X{F) < FCR
Then a standard argument shows that, for any C-bounded loss function f,
|f(X7) — f(X7)] <2C - TV (X7, X7) (C-boundedness)
1
<2C- \/2 KL (X7, X}) (Pinsker’s inequality)
<’yLC\/ 8T
= n .

Here TV (P, @) denote the total variation distance between distributions P and Q.

3 Stability Bound for Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) on dataset S = {f; : ¢ € [n]} is defined as
follows:
X1 < X =V i (X)) + G-

Here 7 is the step size, index 4; is drawn uniformly from [n], and noise ¢; is drawn from AN(0, I).

Let S = {f1, fa,..., fn} and S = {f{, f2,..., fn} be two datasets of size n that differ by at
most one sample. Suppose we run SGLD on both datasets and obtain two sequences of param-
eters (Xo, X1,...) and (X{, X{,...). The following lemma proves a bound for SGLD, similar to
Lemma 2.1.

Lemma 3.1. Ifn > 2, vL < %, and Assumption 1.1 holds, for any time step t and any point xg

in the parameter space, it holds that

’}/QL2
n2

KL (X¢| X¢—1 = 20, X{| X{_; = 20) < 44In2-



Proof. Let p; = xo — YV fi(xo) for each i € [n] and p} = xo — vV f{(x0). Since the loss functions
are L-lipschitz, 1} and each p; is in the Euclidean ball of radius vL centered at xg.

Define probability distributions A = 25 3" , N'(y;, I), B = N (p1,1) and C = N'(iy, I). Then
according to the update rule of SGLD, the conditional distribution of X; and X/, denoted by P
and P’, can be written as

:igN(‘”’ <1—)A+ B (1)
" P’:i( (), I +ZNMZ, ) (1—n>A+ —C. (2)

By [1, Theorem 3], the KL divergence KL (P, P") is bounded (up to a constant factor) by the
directional triangular discrimination from P to P’, defined as

“(P,P) ZA( “kp i@ ’k)P’,P’>,

where each term A (27%P + (1 —27%)P’, P') is the integral of
275 P@) + (1=27P'@@) - P'@)]"  47MP(x) - P'(x))?
2=kP(z) + (1 — 2R P/(z) + P'(x)  27%P(x)+ (2 —27%)P'(x)
over the whole parameter space. Plugging (1) and (2) into the integrand gives
17 L(B(a) - C(@))? _ 4 (Bla) - C@))?
21— HA(@)+27% 1B(z)+ (2—-27%)- 1C(x) — n? Ax)
Thus, the directional triangular discrimination from P to P’ is bounded by

N R[4 (Br) - O@))? 4 B(z) — C(x))2
Nmmgz/2%<x#»dﬁﬁﬂ<<aJ»dx

2
It remains to prove that the integral of W over the parameter space is upper bounded

by 44~2L? under the following conditions:

1. A is a mixture of Gaussian distributions, each with covariance matrix 1.
2. B and C are Gaussian distributions with covariance matrix I.

3. There exists a ball of radius L that contains the means of all Gaussian distribution mentioned
above.

Note that the term W is convex in A(x), so it suffices to consider the case where A(z) is
a single Gaussian distribution. The proof for this part is technical and relegated to Lemma A.1 in
Appendix A.

Therefore, we conclude that

41 2 2L2
02 33422 = 441n2-

KL (P,P') <In2-A*(P,P') < oy



A Missing Proofs in Section 3

Lemma A.1. Let A= N(pua,I), B=N(up,I) and C = N (uc, I) be three Gaussian distributions
on RY such that pa, pup, po are in a Euclidean ball of radius R € [0, %0} Then it holds that

(B(z) = C(x))? 2
/Rd Al dr < 33R”.

Proof of Lemma A.1. By applying a translation and a rotation, we could assume without loss of
generality that pua = 0, and the last d — 2 coordinates of up and puc are all zero. Observe that the
integral is unchanged when we project the space to the two-dimensional subspace corresponding to
the first two coordinates. Thus, it suffices to prove the lemma for d = 2.

Let x be a point in R? with ||z|| = r. Observe that ||z — pa|| = r and

|z — usll, lx — pell € max(r —2R,0),r + 2R].
Thus, the term W is upper bounded by:

|: o max(r—QR,O)2 o (7‘+2R)2 :| 2
] e 2 —e 2

. .
™
2 e

Therefore, we can bound the integral by

_max('r72R,0)2 _ (7‘+2R)2

/}R2 (B(:t:)A—(xC)Y(x))2 " S% O+oo [6 2 _;e 2 ] o

=2V2rRe*?’ [erf (\/5 . R) + erf (3\/5 R)] 4 e U4R? _ go—6R® 4 (2R?
(3)

Here erf (-) is the error function defined as erf (z) = ﬁ I, e~** dt. Finally, it can be verified that

for any R € [0, 1—10], the right-hand side of (3) is upper bounded by 33R?. O
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