
Notes on Generalization Error Bounds

1 Preliminaries

We view a dataset of size n as a collection of n loss functions {fi : i ∈ [n]}, where fi denotes the
loss of a certain parameter configuration on the i-th sample. We make the following assumption
on the loss functions.

Assumption 1.1. Each loss function fi is differentiable, C-bounded and L-lipschitz.

The following lemma allows us to reduce the proof of algorithmic stability to the analysis of a
single update. Let KL (P,Q) denote the KL-divergence from Q to P .

Lemma 1.2. Let (X0, X1, . . . , XT ) and (X ′0, X
′
1, . . . , X

′
T ) be two Markov chains such that for each

t ∈ {0, 1, . . . , T}, Xt and X ′t have the same support. Suppose that the following two conditions hold:

1. X0 and X ′0 follow the same distribution.

2. For any t ∈ [T ] and any x0 in the support of Xt−1, KL
(
Xt|Xt−1 = x0, X

′
t|X ′t−1 = x0

)
≤ αt.

Then it holds that

KL
(
XT , X

′
T

)
≤

T∑
t=1

αt.

Proof. The chain rule of KL-divergence implies that

KL
(
Xt, X

′
t

)
≤KL

(
(Xt−1, Xt), (X

′
t−1, X

′
t)
)

= KL
(
Xt−1, X

′
t−1
)

+ E
x∼Xt−1

[
KL
(
Xt|Xt−1 = x,X ′t|X ′t−1 = x

)]
≤KL

(
Xt−1, X

′
t−1
)

+ αt.

A summation over t = 1, 2, . . . , T proves the lemma.

2 Stability Bound for Langevin Monte Carlo

We define Langevin Monte Carlo (LMC) on dataset S = {fi : i ∈ [n]} as the following procedure:

Xt+1 ← Xt − γ∇f(Xt) + ζt.

Here γ is a step size and f = 1
n

∑n
i=1 fi denotes the average loss on the samples in S. Noise ζt is

drawn from the standard Gaussian distribution N (0, I).
We consider two datasets S and S′ of size n that differ by at most one loss function. Let f and

f
′

denote the average loss on samples in S and S′, respectively. Let random variables Xt and X ′t
denote the parameter after t steps of LMC on datasets S and S′, respectively.

The following lemma bounds the contribution of each iteration in LMC to the KL-divergence.
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Lemma 2.1. Under Assumption 1.1, for any time step t and x0 in the parameter space,

KL
(
Xt|Xt−1 = x0, X

′
t|X ′t−1 = x0

)
≤ 4γ2L2

n2
.

Proof. Let µ = x0 − γ∇f(x0) and µ′ = x0 − γ∇f
′
(x0). Since f and f

′
differ by a single L-lipschitz

loss function, ∥∥∇f(x)−∇f(x)
∥∥ ≤ 2L

n
.

It then follows that ‖µ− µ′‖ ≤ 2γL
n . Since the conditional distributions of Xt and X ′t are given by

N (µ, I) and N (µ′, I),

KL
(
Xt|Xt−1 = x0, X

′
t|X ′t−1 = x0

)
≤
∥∥µ− µ′∥∥2 ≤ 4γ2L2

n2
.

By Lemmas 1.2 and 2.1,

KL
(
XT , X

′
T

)
≤ 4γ2L2T

n2
.

Then a standard argument shows that, for any C-bounded loss function f ,

|f(XT )− f(X ′T )| ≤2C · TV
(
XT , X

′
T

)
(C-boundedness)

≤2C ·
√

1

2
KL
(
XT , X ′T

)
(Pinsker’s inequality)

≤γLC
√

8T

n
.

Here TV (P,Q) denote the total variation distance between distributions P and Q.

3 Stability Bound for Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics (SGLD) on dataset S = {fi : i ∈ [n]} is defined as
follows:

Xt+1 ← Xt − γ∇fit(Xt) + ζt.

Here γ is the step size, index it is drawn uniformly from [n], and noise ζt is drawn from N (0, I).
Let S = {f1, f2, . . . , fn} and S′ = {f ′1, f2, . . . , fn} be two datasets of size n that differ by at

most one sample. Suppose we run SGLD on both datasets and obtain two sequences of param-
eters (X0, X1, . . .) and (X ′0, X

′
1, . . .). The following lemma proves a bound for SGLD, similar to

Lemma 2.1.

Lemma 3.1. If n ≥ 2, γL ≤ 1
10 , and Assumption 1.1 holds, for any time step t and any point x0

in the parameter space, it holds that

KL
(
Xt|Xt−1 = x0, X

′
t|X ′t−1 = x0

)
≤ 44 ln 2 · γ

2L2

n2
.
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Proof. Let µi = x0 − γ∇fi(x0) for each i ∈ [n] and µ′1 = x0 − γ∇f ′1(x0). Since the loss functions
are L-lipschitz, µ′1 and each µi is in the Euclidean ball of radius γL centered at x0.

Define probability distributions A = 1
n−1

∑n
i=2N (µi, I), B = N (µ1, I) and C = N (µ′1, I). Then

according to the update rule of SGLD, the conditional distribution of Xt and X ′t, denoted by P
and P ′, can be written as

P =
1

n

n∑
i=1

N (µi, I) =

(
1− 1

n

)
A+

1

n
B (1)

and

P ′ =
1

n

(
N (µ′1, I) +

n∑
i=2

N (µi, I)

)
=

(
1− 1

n

)
A+

1

n
C. (2)

By [1, Theorem 3], the KL divergence KL (P, P ′) is bounded (up to a constant factor) by the
directional triangular discrimination from P to P ′, defined as

∆∗
(
P, P ′

)
=

+∞∑
k=0

∆
(

2−kP + (1− 2−k)P ′, P ′
)
,

where each term ∆
(
2−kP + (1− 2−k)P ′, P ′

)
is the integral of[

2−kP (x) + (1− 2−k)P ′(x)− P ′(x)
]2

2−kP (x) + (1− 2−k)P ′(x) + P ′(x)
=

4−k(P (x)− P ′(x))2

2−kP (x) + (2− 2−k)P ′(x)

over the whole parameter space. Plugging (1) and (2) into the integrand gives

4−k · 1
n2 (B(x)− C(x))2

2(1− 1
n)A(x) + 2−k · 1nB(x) + (2− 2−k) · 1nC(x)

≤ 4−k

n2
· (B(x)− C(x))2

A(x)
.

Thus, the directional triangular discrimination from P to P ′ is bounded by

∆∗
(
P, P ′

)
≤

+∞∑
k=0

∫
4−k

n2
· (B(x)− C(x))2

A(x)
dx =

4

3n2

∫
(B(x)− C(x))2

A(x)
dx.

It remains to prove that the integral of (B(x)−C(x))2

A(x) over the parameter space is upper bounded

by 44γ2L2 under the following conditions:

1. A is a mixture of Gaussian distributions, each with covariance matrix I.

2. B and C are Gaussian distributions with covariance matrix I.

3. There exists a ball of radius γL that contains the means of all Gaussian distribution mentioned
above.

Note that the term (B(x)−C(x))2

A(x) is convex in A(x), so it suffices to consider the case where A(x) is
a single Gaussian distribution. The proof for this part is technical and relegated to Lemma A.1 in
Appendix A.

Therefore, we conclude that

KL
(
P, P ′

)
≤ ln 2 ·∆∗

(
P, P ′

)
≤ 4 ln 2

3n2
· 33γ2L2 = 44 ln 2 · γ

2L2

n2
.

3



A Missing Proofs in Section 3

Lemma A.1. Let A = N (µA, I), B = N (µB, I) and C = N (µC , I) be three Gaussian distributions
on Rd such that µA, µB, µC are in a Euclidean ball of radius R ∈

[
0, 1

10

]
. Then it holds that∫

Rd

(B(x)− C(x))2

A(x)
dx ≤ 33R2.

Proof of Lemma A.1. By applying a translation and a rotation, we could assume without loss of
generality that µA = 0, and the last d− 2 coordinates of µB and µC are all zero. Observe that the
integral is unchanged when we project the space to the two-dimensional subspace corresponding to
the first two coordinates. Thus, it suffices to prove the lemma for d = 2.

Let x be a point in Rd with ‖x‖ = r. Observe that ‖x− µA‖ = r and

‖x− µB‖ , ‖x− µC‖ ∈ [max(r − 2R, 0), r + 2R] .

Thus, the term (B(x)−C(x))2

A(x) is upper bounded by:

1

2π
·

[
e−

max(r−2R,0)2

2 − e−
(r+2R)2

2

]2
e−

r2

2

.

Therefore, we can bound the integral by

∫
R2

(B(x)− C(x))2

A(x)
dx ≤ 1

2π

∫ +∞

0

[
e−

max(r−2R,0)2

2 − e−
(r+2R)2

2

]2
e−

r2

2

· 2πr dr

=2
√

2πRe4R
2
[
erf
(√

2 ·R
)

+ erf
(

3
√

2 ·R
)]

+ e−14R
2 − 2e−6R

2
+ e2R

2
.

(3)

Here erf (·) is the error function defined as erf (x) := 1√
π

∫ x
−x e

−t2 dt. Finally, it can be verified that

for any R ∈
[
0, 1

10

]
, the right-hand side of (3) is upper bounded by 33R2.

References

[1] Flemming Topsoe. Some inequalities for information divergence and related measures of dis-
crimination. Transactions on Information Theory (TIT), 46(4):1602–1609, 2000.

4


	Preliminaries
	Stability Bound for Langevin Monte Carlo
	Stability Bound for Stochastic Gradient Langevin Dynamics
	Missing Proofs in Section 3

