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In this paper, we consider the Shapley network design game on undirected networks. In
this game, we have an edge weighted undirected network G(V , E) and n selfish players
where player i wants to choose a low cost path from source vertex si to destination
vertex ti . The cost of each edge is equally split among players who pass it. The price of
stability is defined as the ratio of the cost of the best Nash equilibrium to that of the
optimal solution. We present an O (log n/ log logn) upper bound on price of stability for
the single sink case, i.e., ti = t for all i.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

We consider the Shapley network design game, which
is also called network design games with fair cost allo-
cation, introduced in [2]. In this game, we are given a
network and n selfish players, where player i wants to go
from source vertex si to destination vertex ti . The cost of
each edge is shared in a fair manner among players who
pass through it. Each player tries to minimize the cost of
the path it chooses. We are interested in stable status of
the network where no player has an incentive to devi-
ate from its current strategy, which can be modeled by
Nash equilibria. The price of stability, defined as the ra-
tio of the cost of the best Nash equilibrium and that of
an optimal solution, is used to measure the inefficiency of
Nash equilibria. We imagine a network where the traffic
will be initially designed by a central network coordinator.
However, the coordinator is unable prevent the network
users from selfishly deviating from the designated paths.
Therefore, in this scenario, the best Nash equilibrium is an
obvious solution to propose. In this sense, we can think
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the price of stability as the degree of degradation of the
solution quality for the outcome being stable.

The price of stability was first studied in Schulzan and
Moses [1] and was so-called in Anshelevich et al. [2] where
the Shapley network design game was also first explored.
They showed that a pure-strategy Nash equilibrium always
exists and the price of stability of this game is at most
the nth harmonic number H(n) and also provide an ex-
ample showing that this upper bound is the best possible
in directed networks. For undirected networks, Anshele-
vich et al. [2] presented a tight bound on price of stability
of 4/3 for single source and two players case. However,
whether there is a tighter bound for arbitrarily many play-
ers in undirected networks was left as an open question.
Fiat et al. [3] improved the upper bound to O (log logn) for
a special case where each node of the network has a player
and they are required to connect to a common destination.
Chen and Roughgarden [4] considered the weighted ver-
sion of the game where each player has a weight and the
cost of an edge is shared among the players who pass it
in proportion to their weights. As opposed to the ordinary
Nash equilibrium considered before, Albers [5] investigated
the situation where coordination among players is allowed
and showed nearly matching upper and lower bounds on
the price of stability with respect to the notion of strong
Nash equilibrium.
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Our results. We prove that for undirected graphs with a
distinguished destination to which all players must con-
nect, the price of stability of the Shapley network design
game is O (

logn
log logn ) where n is the number of players.

2. Preliminaries

We first introduce notations and formally state the
problem. We are given a undirected network G(V , E) and
n selfish players. Player i has to choose a path from source
vertex si to destination vertex ti . Let Pi denote the set of
simple si − ti paths. The cost of an edge e, c(e), is shared
equally by all players who pass e. An outcome of the game
is specified by a set of n path, each chosen by one player.
For an outcome (P1, P2, . . . , Pn) for Pi ∈ Pi , the cost as-
signed to player i is ci(P1, P2, . . . , Pn) = ∑

e∈Pi

ce
fe

where
fe is the number of paths that include e. We define the
cost of the outcome as

c(P1, P2, . . . , Pn) =
∑

i

ci(P1, P2, . . . , Pn) =
∑

e∈⋃
i P i

ce.

Let P−i denote the vector of paths chosen by the
players other than i. An outcome (P1, P2, . . . , Pn) is
a Nash equilibrium if for every player i, ci(Pi, P−i) =
min P̃ i∈Pi

ci( P̃ i, P−i).
The price of stability is defined as the ratio of the cost

of the best Nash equilibrium of the game to that of an op-
timal solution. We note that the optimal solution is the
min-cost steiner forest satisfying all connectivity require-
ment (si, ti)s.

We consider the following potential function, also used
in [2], that maps every outcome into a numeric value

Φ(P1, . . . , Pk) =
∑
e∈E

fe∑
i=1

ce

i
=

∑
e∈E

ce · H( fe), (1)

where fe denotes the number of paths Pi that include
edge e and H(n) = 1 + 1

2 + 1
3 +· · ·+ 1

n is the nth Harmonic
number.

The most important property of the potential function
is that if a single player i changes its strategy then the
difference between the potential of the new state and that
of the original state is exactly the change in the cost of
player i [2].

In a finite game, better-response dynamics is the follow-
ing process: If the current outcome is not a Nash equilib-
rium, there exists a player who can decrease its cost by
switching its strategy. The player updates its strategy to
an arbitrary superior one, and repeat until a Nash equi-
librium is reached. While better response dynamics need
not terminate in general, it must terminate in finite steps
in Shapley network design games since the potential Φ

strictly decreases during the process and no outcome ap-
pears twice in a finite game.

3. An O ( log n
log log n ) upper bound for the single sink case

We assume the network is connected and all players
share the same destination t . It is easy to see an optimal
solution is a steiner tree with terminals {si}i=1,...,n ∪ {t}.
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Suppose the outcome NASH = (P N
1 , . . . , P N

n ) is a Nash equi-
librium which is obtained by better-response dynamics
from an optimal solution OPT = (P O

1 , . . . , P O
n ). The prop-

erty of the potential function ensures that Φ(NASH) �
Φ(OPT). We denote paths of NASH and that of OPT by
{P N

i }i=1,...,n and {P O
i }i={1,...,n} , respectively. It is proven

that the edge set used by NASH forms a tree [3]. We de-
note the tree of Nash by T N = ⋃

i P N
i and that of OPT by

T O = ⋃
i P O

i . Let |NASH| and |OPT| be their costs respec-
tively.

Let f N
e denote the number of paths that include

edge e in NASH. Let f N (i) = ∑
e: f N

e =i ce and gN( j) =∑
e: f N

e � j ce = ∑
i� j f N (i). It is easy to see |NASH| =∑

i f N (i) = gN(1).
For ease of discussion, we create a dummy player 0 re-

siding in s0 = t . We can see this player has no influence
on either NASH or OPT . First we consider the tree T O =⋃

i P O
i . Doubling all edges in T O forms a Eulerian tour.

Traversing this tour gives a sequence S of vertices in T O .
Suppose φ is a permutation of {si}i=0,...,n according to their
first appearance in S . For simplicity of notation, we let
φ(n + 1) = φ(0). It is easy to see

∑n
i=0 d(φ(i),φ(i + 1)) �

2|T O | = 2|OPT| where d(u, v) is the length of the shortest
path between u and v .

For any two players i and j, let LCA(i, j) be the least
common ancestor of si and s j in tree T N (taking t as the

root). We let P j
i be the subpath of P N

i starting from si
and ending at LCA(i, j). From the definition of Nash equi-
librium, we know the cost of player i in NASH is less than
that of first reaching s j and then following the path P N

j
to t . Thus, we have the following:∑
e∈P j

i

ce

f N
e

� d(si, s j) +
∑
e∈P i

j

ce

f N
e + 1

.

Similarly, we have∑
e∈P i

j

ce

f N
e

� d(si, s j) +
∑
e∈P j

i

ce

f N
e + 1

.

Adding them together, we get∑
e∈P j

i

ce

f N
e

(
f N
e + 1

) +
∑
e∈P i

j

ce

f N
e

(
f N
e + 1

) � 2d(si, s j).

We denote the left-hand side of last equality by A(i, j). We
have

n∑
i=0

A
(
φ(i),φ(i + 1)

)
� 2

n∑
i=0

d
(
φ(i),φ(i + 1)

)

� 4|OPT|. (2)

Now we prove
n∑

i=0

A
(
φ(i),φ(i + 1)

)

=
n∑

i=0

( ∑
e∈Pφ(i)

φ(i+1)
∪Pφ(i+1)

φ(i)

ce

f N
e

(
f N
e + 1

)
)

�
∑ ce

f N
e

(
f N
e + 1

) =
∑ 1

i(i + 1)
f N (i). (3)
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Actually, we only need to prove every e ∈ T N appears
in Pφ(i+1)

φ(i) ∪ Pφ(i)
φ(i+1)

for some 0 � i � n. First it is easy to

see P j
i ∪ P i

j is the unique path from si to s j in T N . For any

e ∈ T N , let T 1
N,e and T 2

N,e be two connected components

obtained by deleting e from T N . It is easy to see T i
N,e ∩

{s0, . . . , sn} �= ∅ for i = 1,2 since each leaf of T N contains
at least one player. So, there exists some i such that φ(i) ∈
T 1

e and φ(i + 1) ∈ T 2
e and e must lie in the unique path

from φ(i) to φ(i + 1).
We define γ = max{i | gN(i) � 1

2 · |NASH|}. We can see
the following:

Φ(NASH) =
∑

i

f N (i)H(i) �
∑
i�γ

f N (i)H(i)

� H(γ )
∑
i�γ

f N (i) = H(γ )gN (γ )

� 1

2
H(γ )|NASH|.

Since Φ(NASH) � Φ(OPT) � H(n)|OPT|, we have

|NASH| � 2H(n)

H(γ )
· |OPT|. (4)

From (2) and (3), we can get

4|OPT| �
∑

i

1

i(i + 1)
f N (i) �

∑
i�γ

1

i(i + 1)
f N (i)

� 1

γ (γ + 1)

∑
i�γ

f N (i)

= 1

γ (γ + 1)

(|NASH| − gN(γ + 1)
)

� 1

2γ (γ + 1)
|NASH|,
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where the last inequality holds since gN(γ + 1) < 1
2 |NASH|

by the definition of γ .
Thus, we have

|NASH| � 8γ (γ + 1) · |OPT|. (5)

Combining inequalities (4) and (5), we have |NASH| �
min{ 2H(n)

H(γ )
,8γ (γ + 1)} · |OPT| for any γ . The right-hand

side takes maximum value O (
logn

log logn ) · |OPT| by choos-

ing γ = O (

√
logn

log logn ). Therefore, we have proved |NASH|
|OPT| �

O (
logn

log logn ).
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