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Abstract
We study the k-regret minimizing query (k-RMS), which is a useful operator for supporting
multi-criteria decision-making. Given two integers k and r, a k-RMS returns r tuples from the
database which minimize the k-regret ratio, defined as one minus the worst ratio between the k-th
maximum utility score among all tuples in the database and the maximum utility score of the r
tuples returned. A solution set contains only r tuples, enjoying the benefits of both top-k queries
and skyline queries. Proposed in 2012, the query has been studied extensively in recent years. In
this paper, we advance the theory and the practice of k-RMS in the following aspects. First, we
develop efficient algorithms for k-RMS (and its decision version) when the dimensionality is 2.
The running time of our algorithms outperforms those of previous ones. Second, we show that
k-RMS is NP-hard even when the dimensionality is 3. This provides a complete characterization
of the complexity of k-RMS, and answers an open question in previous studies. In addition, we
present approximation algorithms for the problem when the dimensionality is 3 or larger.
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1 Introduction

One major task of a database system is to return “representative” records to a user. Usually,
there are two goals in the system. The first goal is to return a limited number of records
to a user when the utility function of this user is known. One query type achieving this
goal is top-k queries [14, 15, 20, 29, 30, 34], each returning k records that have the greatest
scores calculated based on these k records and the utility function of a user where k is a
positive integer. Interested readers may refer to [18] for a survey of top-k queries. The
second goal is to return a set of records which are interesting to a user even though his/her
utility function is unknown. One example of a query type for this goal is skyline queries
[3, 4, 15, 20, 22, 24, 31], each returning a set of records from the database each of which
is not dominated by other records in the database. Here, a record x is said to dominate
another record x′ if and only if each attribute value of x is not worse than that of x′ and at
least one attribute value of x is better than that of x′. Interested readers may also refer to
[9] for a survey of skyline queries.

However, as described in [25, 26, 27], the above two popular queries could not achieve
these two goals simultaneously. First, a top-k query does not achieve the second goal since
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it requires that a user is given an exact utility function indicating his/her preference, which
is not reasonable in some cases because in many situations, the user does not know how to
specify his/her exact utility function. Second, a skyline query does not meet the first goal
because it returns an uncontrolled number of records. In the worst case, all records in the
database are returned as an output in a skyline query.

Recently, r-regret queries and k-regret minimizing set (k-RMS) queries, two new types
of queries meeting the above two goals, were proposed [8, 25, 26, 27] and studied extensively
due to its usefulness and its wide applicability, where r and k are two positive integers. All
applications originally applied to top-k queries and skyline queries could also be applied
to r-regret queries and k-RMS queries. Some typical applications are choosing hotels for
vacation and choosing items (e.g., cars) for purchase.

The purpose of an r-regret query is to return a set of r records in the database, minimizing
the “unhappiness” level of a user when seeing only these r records instead of all records in
the database, even though the utility function of this user is unknown. Given a positive
integer r and a database D containing a number of records, an r-regret query is to return
a set R of r records from D such that the greatest “unhappiness” level of a user, formally
called the maximum regret ratio of a user, is minimized when the user sees only records in
R. Here, the “unhappiness” level of a user, called the regret ratio of a user, ranging from 0
to 1, refers to how unhappy the user would be when seeing only the records in R, instead
of all records in D. Consider the user with his/her utility function f . The score of a record
x in D with respect to the utility function f is denoted by f(x). The greater the score of
a record is, the better the record is. Given a set R of records, the best record in R with
respect to the utility function f is defined to be the record in R with its greatest score with
respect to the utility function f . The regret ratio of this user is equal to 0 if the score of the
best record in the selection set R is equal to the one in the whole database D. It becomes
larger if the score of the best record in R is smaller than the one in D. The maximum regret
ratio of a user refers to the greatest possible regret ratio of a user (since different users can
have different utility functions).

Recently, Chester et al. [8] proposed a generalized version of r-regret queries called the
k-regret minimizing set (k-RMS) problem (or queries) relaxing the concept of the “best”
record to the concept of the best k records. The original form of an r-regret query assumes
that a user must be satisfied with only the “best” record in D. Chester et al. [8] relaxed
this assumption and considered that a user is already satisfied and “happy” with one of the
best k records in D. Specifically, given two positive integers r and k, and a database D
containing a number of records, the k-RMS problem is to return a set R of r records from
D such that the maximum k-regret ratio of a user is minimized. Here, the k-regret ratio of
a user, ranging from 0 to 1, is equal to 0 if the score of the best record in R is at least the
score of the k-th best record in D. It becomes larger if the score of the best record in R is
smaller than the score of the k-th best record in D. Clearly, when k = 1, k-RMS becomes
the r-regret query (called 1-RMS, or simply the RMS problem). In this paper, we have the
following contributions.

1. For RMS in R2 (i.e., the dimensionality is 2), we propose an O(n logn) time exact
algorithm, where n is the number of records in the dataset D. The time complexity is
better than the previous best-known time complexity of O(rn2 + n2 logn) [8].

2. For k-RMS in R2, we present an O(n2 logn) time algorithm, which improves the
O(rn2k

1
3 + n2 logn) time complexity result in [8]. We also propose an approximation

algorithm of O(nk 1
3 log(1/ε) + n logn + nk

1
3 log1+δ n) time, where ε is the additive ap-

proximation error and δ is any positive constant. For typical parameters, it performs
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much faster than the previous best-known algorithm [8]. To solve the problem, we also
give an efficient algorithm for the decision version of the problem, which is interesting in
its own right both theoretically and practically. A summary of our results is in Table 1.

3. We show that for any positive integer k, the k-RMS problem is NP-hard when the
dimensionality of the database is 3 (or larger). This is the first-known hardness result
for the k-RMS problem in a fixed dimensional database. Although Chester et al. [8] prove
the NP-hardness of the RMS problem, it states that the hardness is due to both the high
dimensionality of the dataset and the large number of records in the dataset. It has been
open whether the problem is still NP-hard for fixed dimensional cases. Our result settles
the open problem and thus provides a complete characterization of the computational
complexity of the problem (together with our algorithms in R2).

4. For RMS in Rd, we show it is closely connected to the notion of ε-kernel, introduced by
Agarwal et al. [2]. Based on the connection, we derive an upper bound r−2/(d−1) of the
maximum regret ratio, improving the previous bound r−1/(d−1) in [26]. We also provide
an approximation algorithm for k-RMS when d ≥ 3.

Outline: The rest of the paper is organized as follows. In Section 2, we formally define the
problem. Section 3 gives our algorithms for k-RMS when the dimensionality is 2. Section 4
presents the NP-hardness result. Section 5 gives our algorithms in high-dimensional cases.
Section 6 discusses the related work. Due to the page limitation, many details and proofs
are omitted but can be found in the full version of this paper.

2 Problem Formulation

Let D be a database containing n records/points1 with d attributes/dimensions. Given a
point x in D, for each i ∈ [1, d], the i-th dimensional value of point x is denoted by x[i].
We assume that the values x[i] in the database are all non-negative real numbers, which is
the common assumption in related literatures [8, 26]. Each user is associated with a utility
function f denoted by a d-dimensional non-negative vector ω called a weight vector. Let W
be the set of all possible weight vectors.

Given a point x in D and a weight vector ω, the score of x with respect to ω is the dot
product of x and ω, denoted by 〈x, ω〉. That is, 〈x, ω〉 is equal to

∑d
i=1 x[i]ω[i]. If we know

the utility function f with the weight vector ω, this score 〈x, ω〉 is also written as fω(x).
Given an integer k ≥ 1, we denote the k-th largest score among x ∈ D with respect to
weight vector ω by max(k)

x∈D〈x, ω〉.
Given a non-empty subset R of D and a weight vector ω, the k-regret ratio of set R with

respect to weight vector ω, denoted by k-regratio(R,ω), is defined to be

k-regratio(R,ω) = max
{

0, 1− maxx∈R〈x, ω〉
max(k)

x∈D〈x, ω〉

}
.

If k-regratio(R,ω) is 0, the best score in R is at least as good as the k-th largest score
with respect to ω in the original dataset D. The maximum k-regret ratio of R, denoted by
k-regratio(R), is defined to be k-regratio(R) = supω∈W k-regratio(R,ω).
I Problem 1 (k-RMS [8]). Given two positive integers k and r, we want to find a set R of r
points from D such that k-regratio(R) is minimized.

1 In the following, we use term “records” and “points” interchangeably since they refer to the same
concept.
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Problem Algorithm Time Complexity Det Ex Source
Dec-RMS D-IntCov-1 O(n logn) yes yes Sect. 3.1.1

Dec-k-RMS D-Greedy-k O(n+m) † yes yes Sect. 3.2

RMS

E-Pre-1 O(rn2 + n2 logn) †† yes yes [8]
A-IntCov-1 O(n logn log(1/ε)) yes no Sect. 3.1.2
A-Greedy-k O(n logn+ n log(1/ε)) yes no Sect. 3.2
E-Greedy-1 O(n logn) no yes Sect. 3.3.2

k-RMS
E-Pre-k O(rn2k

1
3 + n2 logn) †† yes yes [8]

A-Greedy-k O((n+m) log(1/ε) + n logn+m log1+δ n) yes no Sect. 3.2
E-Greedy-k O(n2 logn) yes yes Sect. 3.3.1

Table 1 The running times of the previous algorithms and our new algorithms in R2. Det:
Deterministic/randomized algorithms (yes/no); Ex: Exact/approximation algorithms (yes/no); The
naming of the algorithms: D- means the decision version, E- means an exact algorithm and A-
means an approximation algorithm. n = |D|, m = |LSk|, r = |R|. ε is the additive error of
the approximate regret ratio. δ can be any positive constant. † D-Greedy-k requires O(n logn +
m log1+δ n) preprocessing time, and runs in O(n+m) time for any threshold θ. †† In [8], the authors
claim their algorithm runs in O(rn2) time, with the factor depending on k omitted as a constant.
However, a more careful examination shows their algorithm runs in O(rn2 +n2 logn) time for RMS
and O(rn2k

1
3 +n2 logn) time for k-RMS instead: The priority queue requires O(n2 logn) time; the

best known upper bound of the size of the k-level set is O(nk 1
3 ).

This is an optimization problem. The following defines its decision version, called Dec-
k-RMS (we also use Dec-RMS to refer to the case k = 1).
I Problem 2 (Dec-k-RMS). Given two positive integers k and r, and a real value θ ∈ [0, 1],
determine whether there exists a set R of r points from D such that k-regratio(R) is at most
1− θ (if yes, find such a solution set R).

We will also give algorithms for Dec-k-RMS since they will be used as subroutines for
solving the optimization version (i.e., Problem 1). On the other hand, in some applications
where there is a pre-specified error threshold of k-regratio(·), it would be more suitable to
solve the decision version, and thus the decision problem may be interesting in its own right.

3 Efficient Algorithms in R2

In this section, we develop several algorithms for RMS and k-RMS in R2. Table 1 summarizes
our results. We assume that ‖ω‖1 = ω[1] + ω[2] = 1 for any weight vector ω ∈W as scaling
does not change the k-regratio. Hence, we can write ω = (λ, 1− λ) for some λ ∈ [0, 1].

For each point p = (x, y) in D, we define a linear function fp(λ) = λx + (1 − λ)y with
λ ∈ [0, 1]. We reformulate both the decision version and the optimization version as follows.

1. (The decision version) In the decision version Dec-k-RMS, we are given a constant θ,
and we need to decide whether there is some set R ⊆ D of cardinality r such that the
following holds:

∀λ ∈ [0, 1], max
p∈R

fp(λ) ≥ θ ·max(k)
p∈Dfp(λ), (1)

where max(k) is the operator that returns the k-th largest value.
2. (The optimization version) The optimization version k-RMS is to maximize θ in (1).

It is convenient to view the problem from a geometric perspective as follows. Each record
p ∈ D corresponds to a line fp(λ) (λ ∈ [0, 1]). All such lines form a line arrangement A(D).
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O λ

fp(λ)

1

LS1
θ-LS1

λ1 λ2

Figure 1 The arrangement A(D) (black lines),
its 1-level set LS1 (red dashed line), θ-scaled 1-level
set (blue lines), and 3-level set (thick black line)

O λ

fp(λ)

1

Figure 2 Illustrating Example 2: θ-LSk is the
dashed thick curve

The k-level set of A(D) [5] is a piecewise linear curve (see Figure 1 for an example)

LSk(λ) = max(k)
p∈Dfp(λ), for λ ∈ [0, 1].

A segment is a maximal linear piece in the k-level set. Let m denote the number of
segments of LSk(λ). It is known that m is bounded by O(nk 1

3 ) and LSk(λ) can be computed
in O(n logn+nk 1

3 ) expected time by a randomized algorithm [5] or in O(n logm+m log1+δ k)
time by a deterministic algorithm for any constant δ > 0 [5]. Note that the 1-level set LS1
is always convex since it is the upper envelop of A(D) (see the red-dashed curve in Figure
1). However, the convexity property does not necessarily hold for any k > 1.

We introduce scaled level sets, which generalizes the notion of k-level sets.

I Definition 1. (Scaled Level Set) Given a threshold θ > 0, define the θ-scaled k-level set
as the function θ-LSk(λ) = θ · LSk(λ) = θ ·max(k)

p∈Dfp(λ), for λ ∈ [0, 1].

We can reformulate the decision problem Dec-k-RMS as follows: Decide whether there
exists a subset R of r lines, such that the upper envelop of R covers the scaled level set (i.e.,
the function maxp∈R fp(λ) is above θ-LSk).

I Example 2. As an example of the decision problem Dec-k-RMS shown in Fig. 2, where
k = 3, θ = 0.9 and the dashed thick curve is θ-LSk, we aim to find r lines such that they
collectively cover the dashed thick curve from above. When r = 2, the two thick lines shown
in red form a solution. When r = 1, the thick blue line is the only valid solution.

In the sequel, we solve the decision problem in Section 3.2. In Section 3.3, we solve the
optimization problem, using the algorithms for the decision problem as subroutines. But as
warm-ups, we first give some simple but practical algorithms.

3.1 The Warm-up Algorithms
In this section we present algorithms for Dec-RMS and RMS. These algorithms are theoret-
ically not as efficient as the algorithms given later, but they are very simple and practical,
and may also provide some directions for the later improved ones.

3.1.1 Reducing Dec-RMS to Interval Coverage
Note that since LS1 (which is actually the upper envelop of A(D)) is convex, the scaled level
set θ-LS1 is also convex. Also note that m ≤ n in this case. We can compute LS1 (and thus
θ-LS1) in O(n logn) time [16]. We use λ0 = 0, λ1, . . . , λm−1, λm = 1 to denote all breaking

ICDT 2017
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points of θ-LS1 (see Fig. 1). Our task is to cover θ-LS1 using at most r lines. For a line fp,
we let I(p) = {λ | fp(λ) ≥ θ-LS1(λ)}. The convexity of θ-LS1 implies that I(p) is a closed
interval (which may be empty). Moreover, the interval can be computed in O(logn) time
by binary search.

Hence, we can compute the set of intervals {I(p)}p∈D in O(n logn) time.
To solve our problem Dec-RMS, it is sufficient to find a minimum number of intervals in

the above set whose union covers the range [0, 1]. This can be easily done in O(n) time by
a greedy method after the endpoints of the intervals of {I(p)}p∈D are sorted [1].

We call the above algorithm D-IntCov-1.

I Theorem 3. D-IntCov-1 solves the Dec-RMS problem in O(n logn) time and O(n) space
deterministically.

3.1.2 An Approximating Algorithm for RMS
To solve the optimization problem RMS, the high-level idea is to perform binary search on
a set of “candidate values” for the optimal regret ratio θ, and use our decision algorithms
to check whether θ-LS1 can be covered by r lines from D.

We simply perform binary search directly on the interval [0, 1]. Initially, the candidate
range of θ is [0, 1]. Given θ ∈ [0, 1], we run the decision algorithm for Dec-RMS to check
whether the regret ratio of 1 − θ is achievable (i.e., whether θ-LS1 can be covered). If the
answer is yes (resp., no), then we say that θ is feasible and the optimal value is at least
θ (resp., smaller than θ). We stop until the interval for the candidate θ values is shorter
than ε, a given tolerable error. The decision procedure is evoked for O(log 1

ε ) times and the
regret ratio of solution is at most the optimal regret plus ε (we call such a solution an ε-
approximation). We refer to the algorithm as A-IntCov-1 (using D-IntCov-1 as the decision
procedure). We have the following theorem.

I Theorem 4. For any ε > 0, A-IntCov-1 can find an ε-approximation for RMS in
O(n logn log 1

ε ) time.

3.2 The Decision Algorithm for Dec-k-RMS
In this section, we present an algorithm for the problem Dec-k-RMS (and thus also for
Dec-RMS). We call our algorithm D-Greedy-k. We will prove the following theorem.

I Theorem 5. After O(n logn + m log1+δ k)-time preprocessing for any δ > 0, given any
θ ∈ [0, 1], our algorithm D-Greedy-k solves the problem Dec-k-RMS in O(n+m) time, where
n is the number of lines of D and m is the number of segments in the k-level set LSk.

Due to the page limitation, we ignored proofs for some lemmas and some implementation
details, which can be found in the full version of this paper.

Given any θ > 0, D-Greedy-k first finds a smallest subset R ⊆ D of lines such that the
upper envelop of R is above θ-LSk for λ ∈ [0, 1] and then solves Dec-k-RMS by comparing
|R| with the given maximum cardinality r.

As preprocessing, we sort all lines of D by their intersections with the vertical line
λ = 0 from top to bottom. This step can be done in O(n logn) time. Then we compute
LSk in O(n logm + m log1+δ k) time for any δ > 0, using the algorithm in [5]. The total
preprocessing time is O(n logn+m log1+δ k) (since m = O(nk 1

3 ) and k ≤ n).
After the preprocessing, for any given θ, we first compute θ-LSk, which can be done in

O(m) time since LSk has been computed in the preprocessing step. Let l1, l2, . . . , ln be the
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l0 ln+1

l1

l2

l3

l4

λ1 λ2

C

P (C)

C[λ1, λ2]

a1

a2

a3

a4

an+1

b

b

b

b

b

Figure 3 The blue curve denotes
U({l1, l2, l3, l4}). The brown curve denotes
C[λ1, λ2]. The gray area denotes P (C).

bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

Figure 4 Illustrating the set Ri =
{l0, lf(1), lf(2), lf(3), lf(4)} with gi = 4. The red
curve is C and the blue curve is U(Ri). The point p is
at bf(4).

lines of D sorted by their intersections with the vertical line λ = 0 from top to bottom. For
each i ∈ [1, n], let ai denote the intersection of li and the vertical line λ = 0, and thus ai is
also from top to bottom. For convenience, we use l0 to denote the vertical line λ = 0 and
ln+1 to denote the vertical line λ = 1. A simple observation, as formalized in Lemma 6, is
that for two lines l and l′, if l “dominates” l′, then l′ can be directly discarded.

I Lemma 6. For any 1 ≤ i < j ≤ n, if the slope of li is larger than or equal to that of lj,
then there exists an optimal solution R that does not contain lj (and thus lj can be ignored
for solving the problem).

Notice that Lemma 6 essentially states that points that are not in the skyline (in the
original space) can be dropped. This has already been known in previous works (e.g., [8]).

We run a pruning procedure on D to remove such lines lj as specified in the preceding
lemma. This can be done by scanning the lines of D in their index order in O(n) time.
The following algorithm will work on the remaining lines of D. Hence, after the pruning
procedure, we can assume that the remaining lines of D following their index order are also
sorted by their slopes in strictly ascending order (renamed as {l1, l2, ...ln}).

To simplify the notation, we use C to refer to θ-LSk. For any two values λ1 and λ2 with
λ1 ≤ λ2, we use C[λ1, λ2] to denote the portion of C defined on the interval λ ∈ [λ1, λ2]. For
any two points q1 and q2 on C, we also use C[q1, q2] to refer to the portion of C between q1
and q2. Let P (C) denote the region of the plane above C and between l0 and ln+1. For any
set D′ of lines, we use U(D′) to denote its upper envelop. For any point q in the plane, let
λ(q) denote its λ-coordinate. Note that C is λ-monotone, i.e., any vertical line intersects C
at most once. Therefore, we can say something like “move a point on C from left to right”.
Let C ′ be another λ-monotone curve in the plane. We say that C ′ is above C[λ1, λ2] for
some λ1 ≤ λ2 if for any value λ′ ∈ [λ1, λ2], the intersection of the vertical line λ = λ′ and
C ′ is not lower than that of the vertical line λ = λ′ and C. For two points p1 6= p2, we use
p1p2 to denote the line segment with endpoints p1 and p2. See Figure 3 for an illustration
of the definitions given above.

Our algorithm processes the lines of l0, l1, . . . , ln+1 in their index order from l0 to ln+1.
In general, suppose line li has just been processed and we are about to process li+1 for
some i with 0 ≤ i ≤ n. Our algorithm maintains a set Ri = {lf(0), lf(1), . . . , lf(gi)} of
gi + 1 lines in {l0, l1, l2 . . . , li} and a set Bi = {bf(0), bf(1), . . . , bf(gi)} of gi + 1 points with
f(0) < f(1) < · · · < f(gi), for some integer gi ≥ 0, such that Ri and Bi have the following
properties. Refer to Figure 4 for an example.

1. f(0) = 0, i.e., lf(0) is l0. Since l0 is vertical, we tilt it slightly such that it has a negative
slope so that the definition of the upper envelop U(Ri) is clear. Similarly, we tilt ln+1

ICDT 2017
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bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

li+1

Figure 5 Illustrating the special case. No-
tice that li+1 ∩ af(4)bf(4) = bf(4).

bf(1)

lf(1)

lf(2)

lf(3)

lf(4)

bf(2) bf(3)

l0 ln+1

bf(4)

b0

li+1

bi+1

Figure 6 Illustrating the case where li+1 (the dashed
line) intersects af(gi)bf(gi) with gi = 4. In this exam-
ple, Ri+1 = {l0, lf(1), lf(2), li+1} because li+1 intersects
af(1)bf(1) but is not above C[bf(1), bf(2)].

slightly such that it has a positive slope.
2. Each line of Ri has a segment that appears in U(Ri). The segments of lines of Ri appear

on U(Ri) from left to right following the index order.
3. 0 = λ(bf(0)) < λ(bf(1)) < . . . < λ(bf(gi)). For 0 ≤ t ≤ gi, bf(t) ∈ lf(t) ∩ C. Recall that ai

denote the intersection of li and the vertical line λ = 0, thus the line segment af(t)bf(t)
is segment of the line lf(t). For 0 < t ≤ gi, lt is above C[bf(t−1), bf(t)]. Thus, U(Ri) is
above C[0, λ(bf(gi))].

4. For each line lf(t) ∈ Ri with 0 ≤ t ≤ i, the point bf(t) is defined as follows.
When t = 0, bf(t) (i.e., b0) is defined as the intersection of C and l0. Here, for convenience
of discussion, we also let C include the half-line of l0 above b0 and the half-line of ln+1
above an+1 (i.e., the intersection of C and ln+1). In this way, C is the boundary of the
region P (C).
When t > 0, suppose point bf(t−1) has been defined on C. Denote q to be the intersection
of lf(t) and the vertical line through bf(t−1), it holds that q is above bf(t−1). If we move
q rightwards on lf(t), then bf(t) is defined as the first point of P (C) we encounter after
which q will move out of P (C).

5. af(t)bf(t) intersects af(t−1)bf(t−1) for any t with 1 ≤ t ≤ i. For any 2 ≤ t ≤ i, either
af(t)bf(t) does not intersect af(t−2)bf(t−2), or they intersect but lf(t) is not completely
above C[bf(t−2), bf(t−1)]. In Figure 4, although af(1)bf(1) intersects with af(3)bf(3), lf(3)
is not completely above C[bf(1), bf(2)].

6. For each 1 ≤ t ≤ i, the upper hull of the convex hull of C[bf(t−1), bf(t)] is maintained
in a linked list L(bf(t−1), bf(t)). More specifically, L(bf(t−1), bf(t)) stores the edges of the
upper hull of C[bf(t−1), bf(t)] from left to right.

3.2.1 The Algorithm
Initially, for i = 0, we let R0 = {l0} and B0 = {b0}. In general, suppose we have processed
the line li and obtained Ri and Bi. In the following, we describe the algorithm for processing
the next line li+1 and obtain the set Ri+1 and Bi+1.

We first check whether li+1 intersects af(gi)bf(gi). If not, we simply ignore li+1 and let
Ri+1 = Ri.

If li+1 intersects af(gi)bf(gi), we consider a special case where li+1 ∩ af(gi)bf(gi) = bf(gi)
and bi+1 is bf(gi) (e.g., see Fig. 5). If this case happens, then we simply ignore li+1 and let
Ri+1 = Ri. To determine whether bi+1 is bf(gi), we check whether we will go outside P (C)
after we cross bf(gi) if we move on li+1 rightwards. Since bf(gi) is known, we can determine
whether this special case happens in O(1) time.
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If li+1 intersects af(gi)bf(gi) and the special case does not happen (e.g., see Figure 6),
then we proceed to compute the point bi+1 as follows.

As f(gi) ≤ i < i+1, ai+1 is below af(gi). Since li+1 intersects af(gi)bf(gi) and the special
case does not happen, if q is the intersection of li+1 and the vertical line through bf(gi), then
q must be above bf(gi). Imagine that we move q rightwards on li+1. As we defined earlier,
bi+1 is the first point of P (C) we encounter after which q will move out of P (c) (e.g., see
Figure 6). As the special case does not happen, λ(bi+1) > λ(bf(gi)) holds. To find bi+1, we
simply move q rightwards on C until we meet an intersection between li+1 and an edge of
C.

Next we compute the upper hull of (the convex hull of) C[bf(gi), bi+1] and store it in a
linked list L(bf(gi), bi+1). The list L(bf(gi), bi+1) can be constructed when we compute bi+1
by moving q from bf(gi) to bi+1. Since C is λ-monotone, L(bf(gi), bi+1) can be constructed
in linear time in the number of vertices of C[bf(gi), bi+1] (e.g., by Graham’s scan).

Finally, we determine the set Ri+1 as follows. We consider the lines of Ri in the reverse
order of their indices. Consider lf(gi) first. If li+1 does not intersect the line segment
af(gi−1)bf(gi−1) of lf(gi−1), we stop the procedure with Ri+1 = Ri ∪ {li+1}.

Otherwise, there are further two subcases. We check whether li+1 is above
C[bf(gi−1), bf(gi)]. To this end, observe that li+1 is above C[bf(gi−1), bf(gi)] if and only if li+1
is above the upper hull of C[bf(gi−1), bf(gi)], which is stored in the list L(bf(gi−1), bf(gi)). As
we will formalize later in Lemma 7, we can use a upper hull walking procedure to efficiently
determine whether li+1 is above the upper hull of C[bf(gi−1), bf(gi)].

If li+1 is not above C[bf(gi−1), bf(gi)], then we stop the procedure with Ri+1 = Ri∪{li+1}.
Otherwise, we remove lf(gi) from Ri and proceed on considering the next line lf(gi−1). In
addition, we perform a upper hull merge procedure to merge the two lists L(bf(gi−1), bf(gi))
and L(bf(gi), bi+1) to obtain a single list L(bf(gi−1), bi+1), representing the upper hull of
C[bf(gi−1), bi+1]. As formalized later in Lemma 7, the merge procedure can be efficiently
implemented.

The above processes the line lf(gi). Processing the next line lf(gi−1) (and other lines) is
done similarly, and we omit the details. Refer to Figure 6 for an example.

The above algorithm may remove some lines from Ri. For ease of reference, we let R′i be
the remaining Ri after the above algorithm and we still use Ri to refer to the original set.
After the above algorithm, we have Ri+1 = R′i ∪ {li+1}.

The algorithm finishes once ln+1 is processed, after which we will obtain the set Rn+1.
In the full version of this paper, we show that Rn+1 \ {l0, ln+1} is the optimal solution set
R for the problem Dec-k-RMS and the whole algorithm runs in O(n + m) time (excluding
the preprocessing). The subsequent lemma state that the upper hull merge and walking
procedures can be efficiently implemented. See the full version for details of these two
procedures. Note that the efficiency of Lemma 7 relies on that the slopes of the lines of D
in their index order are sorted increasingly.

I Lemma 7. We can implement the upper hull merge procedure and the upper hull walking
procedure such that the total time of the procedure in the entire algorithm is O(m+ n).

By the similar binary search approach as in Section 3.1.2 with D-Greedy-k as the decision
procedure instead, we can obtain an approximation algorithm for k-RMS. We refer to this
algorithm as A-Greedy-k, whose performance is summarized below.

I Theorem 8. For any ε > 0, A-Greedy-k can find an ε-approximation for k-RMS in
O((n+m) log(1/ε) + n logn+m log1+δ n) time.
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3.3 Optimization Algorithms
In this section, we solve the optimization problems RMS and k-RMS. As in Section 3.1.2, the
idea is to perform binary search on the candidate values of the optimal θ, with the regret
ratio 1−θ. Unlike the algorithm there that only gives approximating result, here we present
two exact algorithms. The first algorithm (Section 3.3.1) determines all candidate values
implicitly (there are too many such values so we cannot afford to compute them explicitly),
and performs binary search on them to find an optimal solution for k-RMS. The second
algorithm (Section 3.3.2) exploits the convexity of θ-LS1 and performs randomized binary
search over the candidate values, and it works quite efficiently but only on RMS.

3.3.1 An Exact Algorithm for k-RMS
I Lemma 9. The following statements are equivalent:

1. A set R covers θ-LSk for all λ ∈ [0, 1].
2. A set R covers θ-LSk for all λ ∈ X(D) := {0, 1} ∪ {λ | ∃ l1, l2 ∈ D, l1(λ) = l2(λ)}.

Obviously statement (1) implies (2). On the other hand, note that both θ-LSk and the upper
envelop of R are piecewise linear, with all breaking points contained in X(D). Therefore if
(2) holds, the upper envelop of R must be above θ-LSk. Hence, statement (2) implies (1) as
well. The lemma thus follows.

The following lemma is a consequence of Lemma 9.

I Lemma 10. For k-RMS, the optimal θ is 0, 1 or in

Cand(D) :=
{

l(λ)
LSk(λ)

∣∣∣ l ∈ D,λ ∈ X(D)
}
.

Proof. Notice that by Lemma 9, θ is optimized so that R covers θ-LSk within X(D). This
implies θ-LSk and the upper envelop of R coincide at some λ ∈ X(D), so the lemma holds.

J

Clearly, the set Cand(D) consists of at most |D| · |X(D)| = O(n3) values. To solve the
problem k-RMS, we can call the decision algorithm D-Greedy-k to find the largest feasible
θ ∈ Cand(D). Computing the set Cand(D) explicitly would take Ω(n3) time. Instead, we
present an approach that only constructs Cand(D) implicitly.

First we compute and sort the set X(D). For each λ ∈ X(D), our algorithm maintains
an interval of indices Iλ ⊆ [1, n] so that if the optimal value θ is equal to the j-th largest
value of l(λ)/LSk(λ) for all l ∈ D, then j ∈ Iλ must hold. Initially, Iλ is set to [1, n] for each
λ ∈ X(D), and the interval will shrink during the algorithm.

The algorithm consists of multiple stages. In each stage, we use a line sweeping algorithm
on λ, keeping track of the lines l of D ordered by l(λ). For the i-th time the sweeping line
hits a λi ∈ X(D), we compute a value θi of θ (according to Lemma 10) determined by the
line ranked at the median of the interval Iλi

, and assign it a weight wi = |Iλi
|. In this way,

we compute a weighted subset S = {θi}i ⊆ Cand(D) of size O(n2). Next we compute the
weighted median of S: that is, a value θm ∈ S such that∑

{wi | θi < θm} ≤
1
2
∑
i

wi <
∑
{wi | θi ≤ θm}.

The weighted median can be found in O(|S|) time using the linear-time selection algo-
rithm [21]. Then we use D-Greedy-k to determine whether θm is feasible. If yes, we update
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Figure 7 Illustration of the band, the segments in it, and the sampling method

each Iλi
with θi ≥ θm to be its lower-half interval; otherwise, we update each Iλi

with
θi ≤ θ to be its upper-half interval. Hence, the reduced weight of all intervals of S is
1
2
∑
{wi | θi ≥ θ} or 1

2
∑
{wi | θi ≤ θ}, which is larger than 1

4
∑
i wi in either case. There-

fore, each stage will reduce the total weight by at least 1/4. Since the initial total weight, that
is, the total size of all intervals Iλ is O(n3), we conclude that there are O(logn) stages (the
algorithm stops once the remaining total weight is O(1), after which we can use D-Greedy-k
to find the optimal θ from the remaining O(1) candidate values).

For the running time, each stage is comprised of an O(n2)-time line sweeping algorithm,
an O(n2)-time weighted median algorithm [21], and one call of D-Greedy-k taking O(n +
m) = O(n2) time. Thus, the total time of the algorithm is O(n2 logn). We refer to the
algorithm is as E-Greedy-k (for Exact Greedy Algorithm).

I Theorem 11. E-Greedy-k can compute an optimal solution for the k-RMS problem in
O(n2 logn) time.

3.3.2 An O(n log n) Time Exact Algorithm for RMS
For RMS, we derive a more efficient randomized algorithm, whose expected running time is
O(n logn). Lemma 10 still applies here, but we have a stronger Lemma 12 (which is not
applicable to k-RMS),

I Lemma 12. For RMS, the optimal value θ is in the set Cand(D) defined as

{0, 1} ∪
{

l(λ)
LS1(λ)

∣∣∣∣ l ∈ D and λ ∈ {0, 1}, or ∃ l′ ∈ D, l(λ) = l′(λ)
}
.

Proof. For the optimal θ such that a set R covers θ-LS1, the upper envelop of R and θ-LS1
must coincide at some point. Let l ∈ R to be the line whose segment in the upper envelop
contains such a coincidence point. Suppose two endpoints of this segment are at λ1, λ2.
Then at least one of them is also a coincidence point, since otherwise θ-LS1 would be strictly
above the segment at one of λ1 and λ2, incurring contradiction. J

We partition Cand(D) into two subsets:

Cand1(D) = {0, 1}∪
{

l(λ)
LS1(λ) | l ∈ D and λ ∈ {0, 1}

}
,Cand2(D) =

{
l(λ)

LS1(λ) | ∃ l
′ ∈ D, l(λ) = l′(λ)

}
.

Notice that |Cand1(D)| ≤ 2n+ 2 = O(n). In the following, we first process Cand2(D). Our
approach is inspired by the random sampling technique of Matoušek [23].
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We perform a randomized search over the values of Cand2(D), without constructing
Cand2(D) explicitly. The algorithm consists of multiple rounds and each round shrinks the
search range significantly. Initially, the search range of θ is [0, 1]. In general, suppose the
search range is [θ0, θ1] in the current round. We define a band B as the region bounded by
θ0-LS1, θ1-LS1, and the two vertical lines λ = 0 and λ = 1 (See Figure 7a). A candidate
value l(λ)

LS1(λ) in [θ0, θ1] corresponds to an intersection (λ, l(λ)) of two lines of D lying in the
band B. The current round of the algorithm works as follows.

We first compute the number of line intersections in B and then sample at most n out of
them. Note that the intersection of each line l ∈ D and B consists of at most two (maximal)
segments, and each segment has two endpoints on the boundary of B. Thus there are at
most 4 such endpoints on each line l ∈ D, and the total number of endpoints is O(n).
(See Fig. 7b). These endpoints can be calculated in O(logn) time for each line due to the
convexity of LS1. We then sort the O(n) endpoints on the boundary B in counterclockwise
order (See Fig. 7c), and for the i-th endpoint, we use si to denote the segment ending at
it. We traverse these endpoints in order along the boundary of B. During the traversal, we
maintain an ordered list L, and a counter N . For the i-th endpoint, let i′ be the index such
that si = si′ . If i′ is not in L, then we add i to L; otherwise we delete i′ from L and increase
N by the size of the set {j ∈ L | j > i′}.

I Lemma 13. After the traversal, the counter N is the number of candidates of θ = l(λ)
LS1(λ)

in [θ0, θ1].

Proof. For each λ ∈ Cand2(D) which is determined by an intersection of two lines l(λ) =
l′(λ) for l, l′ ∈ D, the corresponding segments in B must have four endpoints with indices
i′ < j < i < j′ where i and i′ belong to l while j and j′ belong to l′. Thus, we will increase
the counter N for exactly one time, i.e., when i′ is deleted from L and we find that j < i′.
Therefore, there exists a bijection between all candidate values and all increments of the
counter N . So the lemma holds. J

I Example 14. As an example, consider the instance presented in Figure 7c. The endpoints
of segments are labeled counterclockwise. Starting from endpoint 1, we in turn add 1, 2, 3, 4, 5
into the list L. Then for endpoint 6, since s2 = s6 the list becomes {1, 3, 4, 5}, and N

increases by 3. For endpoint 7, we delete 4 from the list and increase N by 1.

The above computes the number of candidatesN . We assumeN > n. Next, we uniformly
and randomly pick n candidates out of theN candidate values in [θ0, θ1]. To this end, we first
uniformly (with replacement) pick a set S of n indices from {1, . . . , N}. Then we compute
the candidate values corresponding to these picked indices, which can be done by doing the
above traversal again. Specifically, during the traversal, suppose that after processing an
endpoint i, the counter N grows from N0 to N1. Then we add the following candidate values:
for every index k ∈ (N0, N1]∩S, we add the candidate value determined by the intersection
of the segment si and the segment corresponding to the (k−N0)-th largest endpoint in the
current ordered list L maintained during the traversal.

The above (at most) n candidate values of θ can be regarded as uniform samples from all
candidate values in the search range [θ0, θ1]. We sort and perform a binary search on these
values using the decision procedure D-Greedy-k (with k = 1) to find two adjacent values
θ′1 and θ′2 in the sorted list such that the optimal θ value is in the range (θ′0, θ′1]. Then, we
shrink the range [θ0, θ1] by updating θ0 = θ′0 and θ1 = θ′1, and proceed to the next round.

We proceed as above until there are at most n candidate values in the search range (i.e.,
N ≤ n). Finally, we run the following post-processing step. Let U be the union of the set of
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these at most n candidate values in the search range and Cand1(D). By the above algorithm,
the optimal value θ is in U . Since |Cand1(D)| = O(n), |U | = O(n). We sort and perform
a binary search on the values of U using the decision procedure D-Greedy-k to eventually
compute the optimal θ value. This finishes our algorithm.

To analyze the running time, it is easy to see that the post-processing step takes
O(n logn) time. Below, we analyze the algorithm before the post-processing step.

We first consider the running time for each round. In each round, the algorithm computes
and sorts the line segment endpoints on the boundary of B, in O(n logn) time. Maintaining
the list L for a traversal of O(n) endpoints can be done in O(n logn) time using a balanced
binary search tree. Sorting and doing the binary search on the sampled n values takes
O(n logn) time, since the procedure D-Greedy-k is called O(logn) times. Thus, the total
running time of each round is O(n logn).

Next, we show that the algorithm has a constant p∗ > 0 probability to proceed into
post-processing within two rounds. Indeed, let p(n0, n1) denote the probability of reducing
the size of the candidate set from n0 to at most n1 in one round. We can obtain that
p(n0, n1) ≥ 1− n0 ·

(
n0−n1
n0

)n
, because the size after the round is larger than n1 only if our

algorithm did not pick any indices from some interval [i, i+ n1) (here the indices i refer to
the θ values of the candidate set after they are sorted). For large enough n, we can see that
p∗ = p(n2, n3/2) ·p(n3/2, n) ≥ (1−n2e−

√
n)2 is close to 1. Suppose the algorithm terminates

at round t (t is a random variable). For any r ≥ 3, it holds that Pr[t ≥ r] ≤ (1 − p∗)r−2.
Overall, the expected number of rounds is E[t] ≤ 2+

∑∞
r=3 Pr[t ≥ r] ≤ 2+

∑∞
r=3(1−p∗)r−2 =

O(1).
By the above analysis, our algorithm, named E-Greedy-1, has the following performance.

I Theorem 15. E-Greedy-1 solves RMS in O(n logn) expected time.

4 NP-Hardness

The main results of this section are the NP-hardness results in Theorem 16 and Theorem 17.

I Theorem 16. Dec-RMS is NP-hard even in R3.

Note that Dec-RMS in Rd for d > 3 generalizes Dec-RMS in R3 (by adding a few dummy
dimensions). Further, by duplicating each point k times in an Dec-RMS instance, we can cre-
ate a Dec-k-RMS instance with exactly the same optimal solution as the Dec-RMS instance.
This implies the following hardness result.

I Theorem 17. Dec-k-RMS is NP-hard for any fixed k ≥ 1 and d ≥ 3.

In the following, we will prove Theorem 16, by a reduction from the vertex cover problem
on a special planar graph, defined as follows.

A planar straight-line graph (PSLG) [28] is a graph G = (V,E) where V is a finite subset
of R2, and E is a subset of mutually disjoint open line segments with both endpoints in
V . A face of a PSLG is a connected component of R2 \ (V ∪ E). The unique unbounded
face is called the outer face, and all others are called inner faces. Similarly, vertices on the
boundary of the outer face are called outer vertices, and all others are called inner vertices.
Notice that in a PSLG, every inner face is an open polygon, and thus for every inner vertex
with degree t, there are t interior angles attached to it. We say that a PSLG is convex if
every inner face is convex, and the complement of the outer face is also convex.

Given an undirected graph G = (V,E), a vertex cover is a subset of vertices S ⊆ V that
cover all edges in E (i.e., every edge in E is incident on some vertex in S). The vertex cover
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(VC) problem asks for a vertex cover of minimum cardinality. Das and Goodrich [10] showed
that the VC problem on a convex PSLG is NP-hard, and below we do the reduction to prove
Theorem 16.

We first define an intermediate problem, called the inner vertex cover problem (IVC), on
a class of so-called normalized PSLG graphs, and provide a reduction from VC convex PSLG
to it in Section 4.1. Then, we further reduce the problem to Dec-RMS in Section 4.2.

4.1 IVC on Normalized PSLG
We define a PSLG to be normalized if it satisfies the following properties:

(convex) Every inner face is convex, and the complement of the outer face is also convex;
(low-degree) Every inner vertex has degree 2 or 3, and every outer vertex has degree 3.
(bounded-angle) Every interior angle attached to an inner vertex of degree 3 is in the
range [π/4, π).
(α-isometric) There exist a standard length l and a constant α ∈ (0, 1) such that every
edge with at least one endpoint being inner vertex has a length in range [l(1−α), l(1+α)],
and such an edge must also have at least one endpoint with degree 2.

b
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Figure 8 A normalized
PSLG with an inner vertex
cover labelled by black ver-
tices.

Given a normalized PSLG, the inner vertex cover (IVC)
problem on PSLG asks for a vertex cover which contains all
the outer vertices of G. Given an instance of convex PSLG
G0 = (V0, E0), we first construct a normalized PSLG G4 =
(V4, E4) through other three intermediate graphs, such that
VC on G0 is reduced to IVC on G4. The construction can be
found in the full version, and we also decide the value of the
parameter α = Ω(1/|V0|) there.

I Lemma 18. There is a polynomial reduction from VC on a
convex PSLG to IVC on a normalized PSLG.

4.2 Reduction to Dec-RMS

b
bc
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Figure 9 Sphere projection for
G4 from the disk D

Then we construct a 3D point set D for Dec-RMS from
the above IVC instance on the normalized PSLG G4 =
(V4, E4). Consider the eighth sphere S = {(x, y, z) ∈ R3

+ |
x2 + y2 + z2 = ρ2}, where ρ is a constant depending on
the parameters of G4. and we draw the PSLG G4 in the
unit disk D inscribed in S. From the origin O, we project
the vertices and the edges V4∪E4 onto S, and denote the
projection mapping by η. Note that straight lines in E4
are projected to arcs of great-circles, and thus the faces
in the projection image are still convex. In fact, when ρ
is large enough, the image of the graph does not deform a
lot. Formally, we have Lemma 19, whose proof is omitted
and can be found in the full version.

I Lemma 19. For any two points A,B ∈ D, we have

ρ2

√
1− AB2

ρ2 − 1 ≤ 〈η(A), η(B)〉 ≤ ρ2
(

1− AB2

2ρ2

)
.
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Let D be the projection image of V4. Thus, |D| = |V4|, and D can be computed in
polynomial time. The convexity of the sphere S ensures that D forms the 1-level of itself.
Intuitively, the normalizing constraints on the degrees, angles, and edges of G4 make sure
that a point of D outside a subset R ⊆ D could keep a small regret ratio if and only if all
its neighbors are in R. We claim that by properly choosing θ in the Dec-RMS problem, a
subset R ⊆ D has 1-regret ratio at most 1− θ if and only if η−1(R) is an inner vertex cover
of G4, and this is implied by the following two lemmas.
I Lemma 20. There exists a constant θ such that for any subset R ⊆ D, if η−1(R) is an
inner vertex cover of G4, then 1-regratio(R) ≤ 1− θ.

By careful computations in the proof of Lemma 20 in the full version, we can set θ =√
1− l2(1 + α)2/(ρ2 − 1). For carefully chosen values of l, α and ρ, we can prove:

I Lemma 21. For any subset R ⊆ D, if η−1(R) is not an inner vertex cover of G4, then
1-regratio(R) > 1− θ.

Combining Lemmas 20 and 21 leads to Lemma 22.
I Lemma 22. For any integer r, G4 has an inner vertex cover of size r if and only if D has
an 1-regret set of size r with ratio 1− θ, where D, θ can be obtained from G4 in polynomial
time.
Theorem 16 thus follows.

5 Algorithms in High Dimensions

5.1 The Problem RMS
The concept of ε-kernel was introduced by Agarwal et al. [2]. By showing that RMS is
closely connected to ε-kernel, we obtain an approximation algorithm for RMS and an upper
bound of the maximum regret ratio, which improves the previous result [26].

A subset R of D is an ε-kernel if maxx∈R〈x,ω〉−miny∈R〈y,ω〉
maxx∈D〈x,ω〉−miny∈D〈y,ω〉 ≥ 1− ε, for any non-zero real

vector ω. Roughly speaking, an ε-kernel is a subset that approximately preserves the width
of the data set in every direction. It is well known that an ε-kernel of constant size can be
computed in linear time (when d = O(1)).
I Theorem 23. [2, 6, 35] Given D in Rd, one can compute an ε-kernel of D of size
O(ε−(d−1)/2) in O(|D|+ 1/εd) time.

We reduce the RMS problem to the ε-kernel problem as follows. Recall that due to
our assumption, all points of D are in the first orthant. We make 2d copies of D in every
orthant as follows. Define D± = {(p[1]x[1], . . . , p[d]x[d]) | (x[1], . . . , x[d]) ∈ D, p[i] ∈ {±1})}.
Suppose we have already found an ε-kernel R′ of D±; then we can project the subset back
to D by taking the absolute value in each coordinate, as follows. Define

abs(x) := (|x[1]|, . . . , |x[d]|), R = abs(R′) := {abs(x) | x ∈ R′}.

I Lemma 24. If R′ is an ε-kernel of D±, then R must have regret ratio at most ε in D.
Using the above reduction and observing that |R| ≤ |R′|, it is immediate to translate

Theorem 23 to an approximation algorithm for RMS in high dimensions.
I Corollary 25. Fixing the dimension d, one can compute a subset R ⊆ D of size r with
maximum regret ratio O(r−2/(d−1)) in O(2dn+ r2d/(d−1)) time.

The upper bound on the regret ratio is better than the previous upper bound
O(r−1/(d−1)) given in [26].
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5.2 The Problem k-RMS
Given r and k, the goal of k-RMS is to compute a set R of r points fromD such that the max-
imum regret ratio is minimized. Let 1− θ∗ denote the maximum regret ratio in the optimal
solution, for some θ∗ ∈ [0, 1]. Viewing each point in D as a (d− 1)-dimensional hyperplane,
Theorem 26 follows from a reduction to the set cover problem over the arrangement of these
hyperplanes. See the full version for a complete proof.

I Theorem 26. There exists a polynomial time algorithm that can compute a set R of at
most r · (d · ln(2n) + 1) points from D with maximum regret ratio at most 1− θ∗.

6 Related Work

Due to the individual drawback of top-k queries and skyline queries, there exist a variety of
ways to combine these two queries in the literature. Top-k skyline select and top-k skyline
join were proposed in [15]. ε-skyline [33] controls the output size with respect to ε after the
utility function specified by the user is known. However, these studies still require that the
utility function should be known beforehand.

The RMS query we study in this paper has the attractive property that no information
on the utility function has to be provided by the user. Since its introduction in [26], it has
been extended and generalized to the interactive setting in [25] and the k-RMS problem in
[8]. [27] proposed an efficient algorithm for 1-RMS. [19] generalized the notion of RMS to
include nonlinear utility functions.

Computing k-level sets and obtaining tight size bounds are of fundamental importance
in computational geometry. For the two-dimension case, [12] provided the best-known upper
bound O(nk1/3). However, the best-known lower bound is Ω(nec

√
log k) [32], which is still

far from the upper bound, and closing the gap is an open problem for years. For algorithms
that compute the k-level sets, we refer the interested readers to [5] and the references therein.
Note that any improvement on computing the k-level sets may lead to improvement of the
time bounds of our algorithms for k-RMS.

The notion of ε-kernel coreset was introduced in the seminal paper by Agarwal et al. [2].
They applied their algorithm for constructing ε-kernel to several shape fitting problems.
Since then, the idea has been extended to many other settings such as clustering (e.g.,
[7, 13]), matrix approximation [11, 13] and stochastic points [17].
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