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Abstract

We study the problem of selecting K arms with the highest expected rewards in a stochastic N -
armed bandit game. Instead of using existing evaluation metrics (e.g., misidentification probability
(Bubeck et al., 2013) or the metric in Explore-K(Kalyanakrishnan & Stone, 2010)), we propose to use
the aggregate regret, which is defined as the gap between the average reward of the optimal solution and
that of our solution. Besides being a natural metric by itself, we argue that in many applications, such
as our motivating example from the crowdsourcing, the aggregate regret bound is more suitable. We
propose a new PAC algorithm, which, with probability at least 1−δ, identifies a set of K arms with regret
at most ε. We provide a detailed analysis on the sample complexity of our algorithm. To complement,
we establish a lower bound on the expected number of samples for Bernoulli bandits and show that the
sample complexity of our algorithm matches the lower bound. Finally, we report experimental results
on both synthetic and real data sets, which demonstrates the superior performance of the proposed
algorithm.

1 Introduction

We study the multiple arm identification problem in a stochastic multi-armed bandit game. More formally,
assume that we are facing a bandit with n alternative arms, where the ith arm is associated with an unknown
reward distribution supported on [0, 1] with mean θi. Upon each sample (or “pull”) of a particular arm,
the reward is an i.i.d. sample from the reward distribution. We sequentially decide which arm to pull next
and then collect the reward by sampling that arm. The goal of our “top-K arm identification” problem is
to identify a subset of K arms with the maximum total mean. The problem finds applications in a variety
of areas, such as in industrial engineering (Koenig & Law, 1985), evolutionary computation (Schmidt et al.,
2006) and medical domains (Thompson, 1933). Here, we highlight another application in crowdsourcing. In
recent years, crowdsourcing services become increasingly popular for collecting labels of the data for many
machine learning, data mining and analytical tasks. The readers may refer to (Raykar et al., 2010; Welinder
et al., 2010; Karger et al., 2012; Zhou et al., 2012; Ho et al., 2013; Chen et al., 2013; Liu et al., 2013) and
references therein for recent work on machine learning in crowdsourcing. In a typical crowdsourced labeling
task, the requestor submits a batch of microtasks (e.g., unlabeled data) and the workers from the crowd
are asked to complete the tasks. Upon each task completion, a worker receives a small monetary reward.
Since some workers from the crowd can be highly noisy and unreliable, it is important to first exclude those
unreliable workers in order to obtain high quality labels. An effective strategy for this purpose is to test each
worker by a few golden samples (i.e., data with the known labels), which are usually labeled by domain experts
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and hence expensive to acquire. Therefore, it is desirable to select the best K workers with the minimum
number of queries. This problem can be cast into our top-K arm identification problem, where each worker
corresponds to an arm and the mean θi characterizes the ith worker’s underlying reliability/quality.

More formally, assume that the arms are ordered by their means: θ1 > θ2 > . . . > θn and let T be the
set of selected arms with size |T | = K. We define the aggregate regret (or regret for short) of T as:

LT =
1

K

(
K∑
i=1

θi −
∑
i∈T

θi

)
. (1)

Our goal is to design an algorithm with low sample complexity and PAC (Probably Approximately Correct)
style bounds. More specifically, given any fixed positive constants ε, δ, the algorithm should be able to
identify a set T of K arms with LT ≤ ε (we call such a solution an ε-optimal solution), with probability at
least 1− δ.

We first note that our problem strictly generalizes the previous work by (Even-Dar et al., 2006; Mannor
& Tsitsiklis, 2004) for K = 1 to arbitrary positive integer K and hence is referred to as multiple arm
identification problem. Although the problem of choosing multiple arms has been studied in some existing
work, e.g., (Bubeck et al., 2013; Audibert et al., 2013; Kalyanakrishnan & Stone, 2010; Kalyanakrishnan
et al., 2012), our notion of aggregate regret is inherently different from previously studied evaluation metrics
such as misidentification probability (Misid-prob) (Bubeck et al., 2013) and Explore-K(Kalyanakrishnan
& Stone, 2010; Kalyanakrishnan et al., 2012). In particular, Misid-prob controls the probability that the
output set T is not exactly the same as the top-K arms; and Explore-Krequires to return a set T where,
with high confidence, the mean of each arm in T is ε-close to the K-th best arm. As we will explain in the
related work section, our evaluation metric is a more suitable objective for many real applications, especially
for the aforementioned crowdsourcing application.

We summarize our results in this paper as follows:

1. Section 3 & 4: We develop a new PAC algorithm with sample complexity O
(
n
ε2

(
1 + ln(1/δ)

K

))
for any

positive constants ε, δ, and any 1 ≤ K ≤ n/2. For n/2 ≤ K < n, the sample complexity becomes

O
(
n−K
K · nε2

)(
n−K
K + ln 1/δ

K

)
. The analysis of the algorithm is presented in Section 4. It is interesting to

compare this bound with the optimal O( nε2 ln
(
1
δ

)
) bound for K = 1 in (Even-Dar et al., 2006; Mannor

& Tsitsiklis, 2004). For K = 1 (i.e., selecting the best arm), our result matches theirs. Interestingly,
when K is larger, our algorithm suggests that even less samples are needed. Intuitively, a larger K
leads to a less stringent constraint for an ε-optimal solution and thus can tolerate more mistakes. Let
us consider the following toy example. Assume all the arms have the same mean 1/2, except for a
random one with mean 1/2 + 2ε. If K = 1, to obtain an ε-optimal solution, we essentially need to
identify the special arm and thus need a lot of samples. However, if K is large, any subset of K arms
would work fine since the regret is at most 2ε/K. Our algorithm bears some similarity with previous
work, such as the halving technique in (Even-Dar et al., 2006; Kalyanakrishnan & Stone, 2010; Karnin
et al., 2013) and idea of accept-reject in (Bubeck et al., 2013). However, the analysis is more involved
than the case for K = 1 and needs to be done more carefully in order to achieve the above sample
complexity.

2. Section 5: To complement the upper bound, we further establish a matching lower bound for Bernoulli

bandits: for 1 ≤ K ≤ n/2, any (deterministic or randomized) algorithm requires at least Ω
(
n
ε2

(
1 + ln(1/δ)

K

))
samples to obtain an ε-optimal solution with the confidence 1− δ; for n/2 ≤ K < n, the lower bound

becomes Ω
(
n−K
K · nε2

)(
n−K
K + ln 1/δ

K

)
. This shows that our algorithm achieves the optimal sample com-

plexity for Bernoulli bandits and for all values of ε, δ and K. To this end, we show two different lower

bounds for 1 ≤ K ≤ n/2: Ω( nε2 ) and Ω( nε2
ln(1/δ)
K ). The first bound is established via an interesting

reduction from our problem to the basic problem of distinguishing two similar Bernoulli arms (with
means 1/2 and 1/2+ε respectively). The second one can be shown via a generalization of the argument
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in (Mannor & Tsitsiklis, 2004) for K = 1. The lower bound for n/2 ≤ K < n can be easily derived by
a reduction to the case for 1 ≤ K ≤ n/2.

3. Section 6: Finally, we conduct extensive experiments with both simulated and real data sets. The
experimental results demonstrate that, using the same number of samples, our algorithm not only
achieves lower regrets but also higher precisions than existing methods . Morever, using our algorithm,
the maximum number of samples taken from any individual arm is much smaller than that in the SAR
algorithm (Bubeck et al., 2013). This property is particularly desirable for crowdsourcing applications
since it can be quite problematic, at least time-consuming, to test a single worker with too samples.

2 Related Works

Multi-armed bandit problems have been extensively studied in the machine learning community over the past
decade (see for example (Auer et al., 2002a,b; Beygelzimer et al., 2011; Bubeck & Cesa-Bianchi, 2012) and
the references therein). In recent years, the multiple arm identification problem has received much attention
and has been investigated under different setups. For example, the work (Even-Dar et al., 2006; Mannor &
Tsitsiklis, 2004; Audibert et al., 2010; Karnin et al., 2013) studied the the special case when K = 1. When
K > 1, Bubeck et al.(2013) proposed a SAR (Successive Accepts and Rejects) algorithm which minimizes
the misidentification probability, (i.e., Pr(T 6= {1, . . . ,K}), denoted as Misid-prob), given a fixed budget (of
queries). Another line of research (Kalyanakrishnan et al., 2012; Kalyanakrishnan & Stone, 2010) proposed
to select a subset T of arms, such that with high probability, for all arms i ∈ T , θi > θK − ε, where θK is
the mean of the K-th best arm. We refer this metric to as the Explore-K metric.

Our notion of aggregate regret is inherently different from Misid-prob and Explore-K, and is a more
suitable objective for many real applications. For example, Misid-prob requires to identify the exact top-K
arms, which is more stringent. When the gap of any consecutive pair θi and θi+1 among the first 2K arms is
extremely small (e.g., o( 1

n )), it requires a huge amount (e.g., ω(n2)) of samples to make the misidentification
probability less than ε (Bubeck et al., 2013). While in our metric, any K arms among the first 2K arms
consititute an ε-optimal solution. In crowdsourcing applications, our main goal is not to select the exact
top-K workers, but a pool of good enough workers with a small number of samples. We note that the
expected simple regret, 1

K (
∑K
i=1 θi −E[

∑
i∈T θi]), was also considered in a number of prior works (Audibert

et al., 2010; Bubeck et al., 2013; Audibert et al., 2013). In (Audibert et al., 2010; Bubeck et al., 2013), the
expected simple regret was shown to be sandwiched by ∆·Misid-prob and Misid-prob (for K = 1), where
∆ = θ1 − θ2. However, ∆ can be arbitrarily small, hence Misid-prob can be an arbitrarily bad bound for
the simple regret. It is worthwhile noting that it is possible to obtain an expected simple regret of ε with
at most O(n2/ε) samples, using the semi-bandit regret bound in (Audibert et al., 2013)1. In constrast, the
goal of this paper is to develop an efficient algorithm to achieve an ε-regret with high probability, which is
a stronger requirement than obtaining an ε-expected simple regret.

To compare our aggregate regret with the Explore-K metric, let us consider another example where
θ1, . . . , θK−1 are much larger than θK and θK+i > θK − ε for i = 1, . . . ,K. It is easy to see that the set
T = {K + 1, . . . , 2K} also satisfies the requirement of Explore-K 2. However, the set T is far away from
the optimal set with the aggregate regret much larger than ε. In crowdsourcing, the labeling performance
can downgrade to a significant extent if the best set of workers (e.g., θ1, . . . , θK−1 in the example) is left out
of the solution.

1 The result in (Audibert et al., 2013) was stated in terms of expected accumulative regret (i.e., the expected regret over
Z time slots). By setting the number of time slots Z to be n

Kε2
, and choosing a random action as the final solution among Z

actions (see e.g., (Bubeck et al., 2009)), one can get an expected simple regret of ε.
2 For this particular instance, it is unlikely that the algorithms proposed in (Kalyanakrishnan et al., 2012; Kalyanakrishnan

& Stone, 2010) would choose {K+ 1, . . . , 2K} as the solution, even though it is a valid solution under their Explore-K metric.
However, it is not clear, from their theoretical analysis, how good their solution is, collectively, as compared with the best K
arms.
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Algorithm 1 Optimal Multiple Arm Identification (OptMAI)

1: Input: n,K,Q.
2: Initialization: Active set of arms S0 = {1, . . . , n}; β = e0.2 · 34 ; set of top arms T0 = ∅. Let r = 0
3: while |Tr| < K and |Sr| > 0 do
4: if |Sr| ≥ 4K then
5: Sr+1 = QE(Sr,K, β

r(1− β)Q)
6: Tr+1 = ∅
7: else
8: (Sr+1, Tr+1) = AR(Sr, Tr,K, β

r(1− β)Q)
9: end if

10: r = r + 1.
11: end while
12: Output: The set of the selected K-arms Tr.

Algorithm 2 Quartile-Elimination(QE) (S,K,Q)

1: Input: S,K,Q.
2: Sample each arm i ∈ S for Q0 = Q

|S| times and let θ̂i be the empirical mean of the i-th arm.

3: Find the first quartile (lower quartile) of the empirical mean θ̂a, denoted by q̂.

4: Output: The set V = S\{i ∈ S : θ̂i < q̂}.

Algorithm 3 Accept-Reject(AR) (S, T,K,Q)

1: Input: S, T,K,Q and s = |S|.
2: Sample each arm i ∈ S for Q0 = Q

|S| times and let θ̂i be the empirical mean of the i-th arm.

3: LetK ′ = K−|T |. Let θ̂(K′) and θ̂(K′+1) be theK ′-th and (K ′+1)-th largest empirical means, respectively.
Define the empirical gap for each arm i ∈ S:

∆̂i = max(θ̂i − θ̂(K′+1), θ̂(K′) − θ̂i) (2)

4: while |T | < K and |S| > 3s/4 do

5: Let a ∈ arg maxi∈S ∆̂i and set S = S\{a}.
6: if θ̂a ≥ θ̂(K′+1) then
7: Set T = T ∪ {a}.
8: end if
9: end while

10: Output: The set S and T .

3 Algorithm

In this section, we describe our algorithm for the multiple arm identification problem. Our algorithm
OptMAI (Algorithm 1) takes three positive integers n,K,Q as the input, where n is the total number of
arms, K is the number of arms we want to choose and Q is an upper bound on the total number of samples 3.

In Section 4, we show that Q = O
(
n
ε2

(
1 + ln(1/δ)

K

))
suffices to obtain an ε-optimal solution with probability

at least 1 − δ. OptMAI consists of two stages, the Quartile-Elimination (QE) stage (line 4-6) and the
Accept-Reject (AR) stage (line 8).

The QE stage proceeds in rounds. Each QE round calls the QE subroutine in Algorithm 2, which requires
three parameters S,K and Q. Here, S is the set of arms which we still want to pull and Q is the total number

3If Algorithm 1 stops at round r = R, the total number of samples is (1− βR)Q < Q.
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of samples required in this round. We sample each arm in S for Q/|S| times and then discard a quarter
of arms with the minimum empirical mean 4. We note that in each call of the QE subroutine, we pass
different Q values (exponentially decreasing). This is critical for keeping the total number of samples linear
and achieving the optimal sample complexity. See Algorithm 1 for the setting of the parameters. The QE
stage repeatedly calls the QE subroutine until the number of remaining arms is at most 4K.

Now, we enter the AR stage, which also runs in rounds. Each AR round (Algorithm 3) requires four
parameters, S, T,K,Q, where S,K,Q have the same meanings as in QE and T is the set of arms that we
have decided to include in our final solution and thus will not be sampled any more. In each AR subroutine
(Algorithm 3), we again sample each arm for Q/|S| times. We define the empirical gap for the i-th arm to
be the absolute difference between the empirical mean of the i-th arm and the K ′-th (or K ′ + 1-th) largest
empirical mean, where K ′ = K − |T | (see Eq.(2)). We remove a quarter of arms with the largest empirical
gaps. There are two types of those removed arms: those with the largest empirical means, which are included
in our final solution set T , and those with the smallest empirical means, which are discarded from further
consideration.

Remark 3.1. We would like to mention that the naive uniform sampling algorithm, which takes the same
number of samples from each arm and chooses the K arms with the largest empirical means, does not achieve
the optimal sample complexity. In general, it requires at least Ω(n log n) samples, which is log n factor worse
than our optimal bound. See Appendix E for a detailed discussion.

Remark 3.2. To achieve the desired asymptotic bound on regret and sample complexity, the AR stage can
be substituted by a simpler process which takes a uniform number of samples from each arm and chooses the
K arms with the largest empirical means. The details can be found in Appendix D. We choose to present
the AR subroutine in this section because 1) it also meets the theoretical bound in Section 4; 2) the AR stage
shows a much better empirical performance.

4 Bounding the Regret and the Sample Complexity

We analyze the regret achieved by our algorithm. Firstly, let us introduce some necessary notations. For
any positive integer C, we use [C] to denote the set {1, 2, . . . , C}. For any subset S of arms, let indi(S) be
the arm in S with the i-th largest mean. We use valC(S) to denote the average mean of the C best arms in

S, i.e., valC(S) , 1
C

∑C
i=1 θindi(S). Let totC(S) = C · valC(S) be the total sum of the means of the C best

arms in S. We first consider one QE round. Suppose S is the set of input arms and V is the output set.
We first show that the average mean of the K best arms in V is at most ε worse that that in S, for some
appropriate ε (depending on Q and |S|).

Lemma 4.1. Assume that K ≤ |S|/4 and let V be the output of QE(S,K,Q) (Algorithm 2). For every

δ > 0, with probability 1− δ, we have that valK(V ) ≥ valK(S)− ε, where ε =

√
|S|
Q

(
10 + 4 ln(2/δ)

K

)
.

The basic idea of the proof goes as follows. Let p = θind|S|/2(S) be the median of the θ in S and

τ = mini∈V (θ̂i) be the minimum empirical mean for the selected arms in V . For each arm i among the

top K arms in S, we define the random variable Xi = 1{θ̂indi(S) < p + ε
2}, where 1{·} is the indicator

function (i.e., 1{true} = 1 and 1{false} = 0). Let X = 1
K

∑K
i=1(θindi(S)−p)Xi. We further define two events

E1 = {X ≤ ε} and E2 = {τ < p + ε
2}. Intuitively, E2 says that the threshold τ , as the third quartile of the

empirical means, is not much larger than the expected median value (i.e., p). When E2 happens, E1 would
give an upper bound on the regret valK(S) − valK(V ). We formalize this idea by first showing that the
events E1 and E2 together imply that valK(V ) ≥ valK(S) − ε. Then we prove that with the ε value defined
in the lemma statement, Each of E1 and E2 holds with probability at least 1− δ

2 . By a simple union bound,
our proof is completed. The details are presented in the appendix.

4 The empirical mean of an arm is the average reward of the arm, over all samples in this round.
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Secondly, we provide the regret bound for the AR algorithm in the following lemma with the proof
presented in the appendix.

Lemma 4.2. Let (S′, T ′) be the output of the algorithm AR(S, T,K,Q). For every δ > 0, with probability
1− δ, we have that

totK−|T ′|(S
′) + tot|T ′|(T

′) ≥ totK−|T |(S) + tot|T |(T ) − εK,

where ε =

√
|S|
Q

(
4 + log(2/δ)

K

)
.

In each round of the AR-stage with S = Sr and top arms T = Tr, the value
totK−|T |(S)+tot|T |(T )

K is the
best possible average mean of K arms. Lemma 4.2 provides an upper bound for the gap between this value
on the output (T ′, S′) by AR and the best possible one. Applying this bound over all rounds would further
imply that this value of the output of Algorithm 1 is not far away from that of the real top-K arms. With
Lemma 4.1 and Lemma 4.2 in place, we prove the performance of Algorithm 1 in the next theorem.

Theorem 4.3. For every δ > 0, with probability at least 1 − δ, the output of OptMAI algorithm T is an

ε-optimal solution (i.e., valK(T ) ≥ valK([n])− ε) with ε = O

(√
n
Q

(
1 + ln 1/δ

K

))
.

Theorem 4.3 also provides us the sample complexity of Algorithm 1 for any pre-fixed positive values ε
and δ, as stated in the next corollary.

Corollary 4.4. For any positive constants ε, δ > 0, it suffices to run Algorithm 1 with

Q = O

(
n

ε2

(
1 +

ln(1/δ)

K

))
. (3)

in order to obtain an ε-optimal solution with probability 1− δ. In other words, the sample complexity of the

algorithm is bounded by O
(
n
ε2

(
1 + ln(1/δ)

K

))
from above.

For n/2 ≤ K < n, we can easily obtain a better sample complexity as follows.

Theorem 4.5. For any δ > 0 and n/2 ≤ K < n, with probability at least 1 − δ, there is an algorithm that
can find an ε-optimal solution T (i.e., valK(T ) ≥ valK([n])− ε) and the number of samples used is at most
at most

O
(n−K

K
· n
ε2

)(n−K
K

+
ln 1/δ

K

)
.

Proof. Instead of directly finding the best K arms, we attempt to find the worst n−K arms. First, we can
see that for any ε′, δ > 0, we can find a set T ′ of n−K arms such that

∑
i∈T ′

θi −
n∑

i=K+1

θi ≤ (n−K)ε′, (4)

(we call such a set T ′ an ε′-worst solution) with probability 1−δ, using at most O
(
n
ε′2

(
1 + ln(1/δ)

n−K

))
samples.

This can be done by constructing a new multiple arm identification instance and run OPTMAI on the new
instance. In the new instance, there is an arm with mean 1−θi if the original instance consists of an arm with
mean θi. Sampling from this arm can be simulated by sampling from the corresponding original arm (if we get
a sample of value x from the original arm, we use 1−x as the sample for the new arm). It is easy to see that
for any ε-optimal solution T ′ for the new instance, we have that

∑n
i=K+1(1−θi)−

∑
i∈T ′(1−θi) ≤ (n−K)ε′

(by definition), which is equivalent to an ε′-worst solution for the original instance.

By setting ε′ = K
n−K · ε and T = [n] \ T ′, we can see that(4) implies that

∑K
i=1 θi −

∑
i∈T θi ≤ Kε. The

theorem follows.

6



5 A Matching Lower Bound

In this section, we provide lower bounds for Bernoulli bandits where the reward of the i-th arm follows a
Bernoulli distribution with mean θi. We prove that for any underlying {θi}ni=1 and any randomized algorithm
A, the expected number of samples Q required to identify an ε-optimal solution with probability 1− δ is at

least max
{

Ω
(
n ln(1/δ)
ε2K

)
,Ω
(
n
ε2

)}
= Ω

(
n
ε2

(
ln(1/δ)
K + 1

))
. According to Corollary 4.4, for Bernoulli bandits,

our algorithm achieves this lower bound of the sample complexity. In particular, we separate the proof into

two parts: in the first part, we show that Q ≥ Ω
(
n
ε2

)
; and Q ≥ Ω

(
n ln(1/δ)
ε2K

)
in the second.

5.1 First Lower Bound: Q ≥ Ω
(
n
ε2

)
Theorem 5.1. Fix a real number ε, integers K,n, where 0 < ε < 0.01 and 10 ≤ K ≤ n/2. Let A be a
possibly randomized algorithm, so that for any set of n Bernoulli arms with means θ1, θ2, . . . , θn,

• A takes at most Q samples in expectation;

• with probability at least 0.8, A outputs a set T of size K with valK(T ) ≥ valK([n])− ε.

Then, we have that Q ≥ Ω( nε2 ).

The high level idea of the proof of Theorem 5.1 is as follows. Suppose there is an algorithm A which
can find an ε-optimal solution with probability at least 0.8 and uses at most Q samples in expectation.
We show that we can use A as a subroutine to construct an algorithm B, which can distinguish whether a
single Bernoulli arm has mean 1/2 or 1/2 + 4ε with at most 200Q

n samples (Lemma 5.2). We utilize the well
known fact that, for any algorithm (including B), distinguishing such a Bernoulli arm requires at least Ω( 1

ε2 )

samples. Hence, we must have that 200Q
n ≥ Ω( 1

ε2 ), which gives the desired lower bound for Q.
Formally, we show in the following lemma how to construct B, using A as a subroutine.

Lemma 5.2. Let A be an algorithm in Theorem 5.1. There is an algorithm B, which correctly outputs
whether a Bernoulli arm X has the mean 1

2 + 4ε or the mean 1
2 with probability at least 0.51, and B makes

at most 200Q
n samples.

Assuming the existence of an algorithm A stated in Theorem 5.1, we construct the algorithm B as follows.
Keep in mind that the goal of B is to distinguish whether a given Bernoulli arm (denoted as X) has mean
1/2 or 1/2 + 4ε.

Algorithm 4 Algorithm B (which calls A as a subroutine)

1: Choose a random subset S ⊆ [n] such that |S| = K and then choose a random element j ∈ S.
2: Create n artificial arms as follows: For each i ∈ [n], i 6= j, let θi = 1

2 + 4ε if i ∈ S, let θi = 1
2 otherwise.

3: Simulate A as follows: whenever A samples the i-th arm:
(1) If i = j, we sample the Bernoulli arm X (recall X is the arm which B attempts to separate);
(2) Otherwise, we sample the arm with mean θi.

4: If the arm X is sampled by less than 200Q
n times and A returns a set T such that j 6∈ T , we decide that

X has the mean of 1
2 ; otherwise we decide that X has the mean of 1

2 + 4ε.

We note that the number of samples of B increases by one whenever X is sampled. Since B stops and
outputs the mean 1

2 + 4ε if the number of samples on X reaches 200Q
n , B takes at most 200Q

n samples from
X. The intuition why the above algorithm can separate X is as follows. If X has mean 1/2 + 4ε, X is no
different from any other arm in S. Similarly, if X has mean 1/2, X is the same as any other arm in [n] \ S.
If A satisfies the requirement in Theorem 5.1, A can identify a significant proportion of arms with mean
1/2 + 4ε. So if X has mean 1/2 + 4ε, there is a good chance (noticeably larger than 0.5) that X will be
chosen by A. In the appendix, we formally prove the correctness of B, i.e., it can correctly output the mean
of X with probability at least 0.51; and thus conclude the proof of Lemma 5.2.
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The second step of the proof of Theorem 5.1 is a well-known lower bound on the expected sample
complexity for separating a single Bernoulli arm (Chernoff, 1972; Anthony & Bartlett, 1999).

Lemma 5.3. Fix ε such that 0 < ε < 0.01 and let X be a Bernoulli random variable with mean being either
1
2 + 4ε or 1

2 . If an algorithm B can output the correct mean of X with probability at least 0.51, then expected
number of samples performed by B is at least Ω( 1

ε2 ).

By combining Lemma 5.2 and Lemma 5.3, we have 200Q
n ≥ Ω( 1

ε2 ); and therefore prove the claim that
Q ≥ Ω( nε2 ) in Theorem 5.1.

5.2 Second Lower Bound: Q ≥ Ω
(
n ln(1/δ)
ε2K

)
Lemma 5.4. Fix real numbers δ, ε such that 0 < δ, ε ≤ 0.01, and integers K,n such that K ≤ n/2. Let
A be a deterministic algorithm (i.e., the only randomness comes from the arms), so that for any set of n
Bernoulli arms with means θ1, θ2, . . . , θn,

• A makes at most Q samples in expectation;

• with probability at least 1− δ, A outputs a set T of size K with valK(T ) ≥ valK([n])− ε.

Then, we have that Q ≥ n ln(1/δ)
20000ε2K .

Now, we provide a sketch of our proof, which generalizes the previous proof for the lower bound when
K = 1 (Mannor & Tsitsiklis, 2004). Let t = b nK c ≥ 2 and we divide the first tK arms into t groups, where
the j-th group consists of the arms with the indices in [(j − 1)K + 1, jK]. We first construct t hypotheses
H1, H2, . . . ,Ht as follows. In H1, we let θi = 1/2 + 4ε for arms in the first group and let θi = 1/2 for the
remaining arms. In Hj , where 2 ≤ j ≤ t, we let θi = 1/2 + 4ε when i is in the first group, θi = 1/2 + 8ε
when i is in the j-th group, and θi = 1/2 otherwise.

For each j ∈ [t], let PrHj [·] (EHj [·] resp.) denote the probability of the event in [·] (the expected value
of the random variable in [·] resp.) under the hypothesis Hj . Let q̃j be the total number of samples taken
from the arms in the j-th group. By an averaging argument, there must exist a group j0 ≥ 2 such that
EH1 [q̃j0 ] ≤ Q

t−1 ≤
2Q
t .

After fixing j0, we focus on the hypothesis H1 and Hj0 . Let val
Hj
K (T ) (val

Hj
K ([n]) resp.) be the valK(T )

value (valK([n]) resp.) computed using θ values defined in hypothesis Hj . Note that val
Hj
K (T ) (for any j) is

always well defined no matter which hypothesis is the true underlying probability measure.

At a high level, our proof works as follows. We assume for contradiction that Q < n ln(1/δ)
20000ε2K . Using the

assumption PrH1
[valH1

K (T ) ≥ valH1

K ([n])− ε] ≥ 1− δ, we can first prove that:

PrHj0 [valH1

K (T ) ≥ valH1

K ([n])− ε] ≥
√
δ

4
. (5)

We further observe that when valH1

K (T ) ≥ valH1

K ([n]) − ε, T must consist of more than 3
4K arms from the

first group; while when val
Hj0
K (T ) ≥ val

Hj0
K ([n]) − ε, T must consist of more than 3

4K arms from the j0-th

group. Therefore the two events are mutually exclusive and we have: PrHj0

[
val

Hj0
K (T ) ≥ val

Hj0
K ([n])− ε

]
≤

1 − PrHj0

[
valH1

K (T ) ≥ valH1

K ([n])− ε
]
≤ 1 −

√
δ
4 ≤ 1 − 2δ, where the last inequality is because of δ < 0.01.

This contradicts the performance guarantees of Algorithm A and thus we conclude our proof.
The most technical part is to prove (5). To this end, we construct the likelihood ratio between events

under the hypothesis H1 and Hj0 . The intuition is that H1 and Hj0 are similar, thus for any sampling
outcomes y, the probability that H1 generates y is close to Hj0 . Since A is deterministic, the sampling
outcomes determine the next action and the final decision. Using this argument, we can show that if the
event {valH1

K (T ) ≥ valH1

K ([n])− ε} happens under H1 with probability at least 1− δ, it would happen under

Hj0 with a significant probability (i.e., at least
√
δ
4 ). The details are provided in the appendix.
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The proof of Lemma 5.4 can be easily generalized to the case where A is randomized, which allows us to
prove the following stronger lower bound statement. The proof of Theorem 5.5 is relegated to the appendix.

Theorem 5.5. Fix real numbers δ, ε such that 0 < δ, ε ≤ 0.01, and integers K,n, where K ≤ n/2. Let A be
a (possibly randomized) algorithm so that for any set of n arms with the mean θ1, θ2, . . . , θn,

• A makes at most Q samples in expectation;

• With probability at least 1− δ, A outputs a set T of size K with valK(T ) ≥ valK([n])− ε.

We have that Q = Ω
(n ln(1/δ)

ε2K

)
.

6 Experiments

In this experiment, we assume that arms follow independent Bernoulli distributions with different means.
To make a fair comparison, we fix the total budget Q and compare our algorithm (OptMAI) with the
uniform sampling strategy and two other state-of-the-art algorithms: SAR (Bubeck et al., 2013) and LUCB
(Kalyanakrishnan et al., 2012), in terms of the aggregate regret in (1).

The implementation of our algorithm is slightly different from its description in Section 3. While we
choose to present a variant of our implementation only because of its simplicity of exposition, we describe
the full details of the differences as follows. It is easy to check that our implementation still meets the
theoretical bound proved in Section 4.

First, observe that in OptMAI, Q is an upper bound of the number of samples, while (1 − βR)Q < Q
is the actual number of samples used, where R is the total number of rounds run by the algorithm. To
fully utilize the budget, we run OptMAI with a parameter slightly greater than Q to ensure that the actual
number of samples roughly equals to (but no greater than) Q .

Second, in each round of QE or AR, when computing the empirical mean θ̂i, our implementation uses
all the samples obtained for the i-th arm (i.e. including the samples from previous rounds). This will lead
to be better empirical performance especially when the budget is very limited.

Third, in each round of OptMAI, the ratio of the number of samples between two consecutive rounds
is set to be β = e0.2 · 0.75 ≈ 0.91. In the real implementation, one could treat this quantity as a tuning
parameter to make the algorithm more flexible (as long as β ∈ (0.75, 1)). In this experiment, we report the
results for both β = 0.8 and β = 0.9. Based on our experimental results, one could simply set β = 0.8, which
will lead to reasonably good performance under different scenarios. We propose the following strategy to
tune β as a future work. In the first stage, we sample each arm for a few times and then use the empirical
estimate of θi to generate as much simulated data as we want. Then, we choose the best β based on the
simulated data. Finally, we apply the carefully tuned β to the real data using the remaining budget.

6.1 Simulated Experiments

In our simulated experiment, the number of total arms is set to n = 1000. We vary the total budget
Q = 20n, 50n, 100n and K = 10, 20, . . . , 500. We use different ways to generate {θi}ni=1 and report the
comparison results among different algorithms:

1. θi ∼ Unif[0, 1] : each θi is uniformly distributed on [0, 1] (see Figure 1(a) to Figure 1(b)).

2. θi = 0.5/0.6 : θi = 0.6 for i = 1, . . . ,K and θi = 0.5 for i = K + 1, . . . , n. We note that such a two
level setting of θi is more challenging for the selection of top-K arms (see Figure 1(d) to Figure 1(f)).

It can be seen from Figure 1 that the uniform sampling performs the worst and our method outperforms
SAR and LUCB in most of the scenarios. We also observe that when K is large, the setting of β = 0.8 (red
line) outperforms that of β = 0.9; while for small K, β = 0.9 (blue line) is a better choice.

We also generate θi from the truncated normal distribution and the Beta distribution and have similar
observations. The comparison results are presented in the appendix due to space constraints.
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(a) θ ∼ Unif[0, 1], Q = 20 · n
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(b) θ ∼ Unif[0, 1], Q = 50 · n
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(c) θ ∼ Unif[0, 1], Q = 100 · n
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(d) θ = 0.6/0.5, Q = 20 · n
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(e) θ = 0.6/0.5, Q = 50 · n
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(f) θ = 0.6/0.5, Q = 100 · n

Figure 1: Performance comparison on simulated data.
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(b) Regret (Q = 10 · n)
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(c) Regret (Q = 20 · n)
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(d) Regret (Q = 50 · n)
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(g) Precision (Q = 10 · n)
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Figure 2: Performance comparison on the RTE data.

6.2 Real RTE Data

We generate θ from a real recognizing textual entailment (RTE) dataset (Section 4.3 in (Snow et al., 2008)).
There are 800 task and each task is a sentence pair. Each sentence pair is presented to 10 different workers
to acquire binary choices of whether the second hypothesis sentence can be inferred from the first one. There
are in total 164 different workers. Since there are true labels of tasks, we set each θi for the i-th worker to
be his/her labeling accuracy. The histogram of θi is presented in Figure 2(a). We vary the total budget
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Q = 10n, 20n, 50n and K from 10 to 100 and report the comparison of the regret for different approaches in
Figure 2(b) to Figure 2(d). As we can see, our method with β = 0.8 (red line) outperforms other competitors
for most of K’s and Q’s. SAR performs the best for K = 10, Q = 10n; while our method with β = 0.9
performs the best for K = 10 and Q = 20n.

In addition, we would like to highlight an interesting property of our method from the empirical study. As
shown in Figure 2(e) and Figure 2(f) with Q = 10n and K = 20, the empirical distribution of the number of
samples (i.e., tasks) assigned to a worker using SAR is much more skewed than that using our method. This
property makes our method particularly suitable for crowdsourcing applications since it will be extremely
time-consuming if a single worker is assigned with too many tasks (e.g., golden samples). For example, for
SAR, a worker could receive up to 143 tasks (Figure 2(e)) while for our method, a worker receives at most
48 tasks (Figure 2(f)). In crowdsourcing, a single worker will take a long time and soon lose patience when
performing nearly 150 testing tasks.

In Figure 2(g) and Figure 2(h), we compare different algorithms in terms of the precision, which is defined

as the number of arms in T which belong to the set of the top K arms over K, i.e., |T∩[K]|
K . As we can see,

our method with β = 0.8 achieves the highest precision followed by LUCB.

7 Conclusions and Future Work

We study the problem of identifying the (approximate) top K-arms in a stochastic multi-armed bandit game.
We propose to use the aggregate regret as the evaluation metric, which fits to the PAC framework. We argue
that in many real applications, our metric is more suitable. Our algorithm can identify an ε-optimal solution

with probability at least 1 − δ, with the sample complexity O
(
n
ε2

(
1 + ln(1/δ)

K

))
for any 1 ≤ K ≤ n/2,

O
(
n−K
K · nε2

)(
n−K
K + ln 1/δ

K

)
for any n/2 < K < n. These upper bounds match the lower bounds provided

in this paper.
There are several directions that we would like to explore in the future. Firstly, our algorithm provides

the guarantees for the worst case scenarios and does not depend on the actual reward distributions (i.e., the
value of θi). In many real data sets, the means of the arms are well separated, and might be easier than
the worst case instances (such as the instances constructed in our lower bound proof). Inspired by the work
(Audibert et al., 2010; Bubeck et al., 2013; Karnin et al., 2013), our next step is to design new adaptive
algorithms and provide more refined distribution dependent upper and lower bounds. Secondly, our lower
bound instances are based on Bernoulli bandits. It would be interesting to establish the lower bound for
other distributions supported on [0, 1] or even more general distributions, such as sub-Gaussian. Finally, it
would be of great interest to test our algorithm on real crowdsourcing platforms and apply it to many other
real-world applications.
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A Proof of the Correctness of the QE Algorithm (Lemma 4.1)

Lemma 4.1 Assume that K ≤ |S|/4 and let V be the output of QE(S,K,Q) (Algorithm 2). For every δ > 0,

with probability 1− δ, we have that valK(V ) ≥ valK(S)− ε, where ε =

√
|S|
Q

(
10 + 4 ln(2/δ)

K

)
.

Let p = θind|S|/2(S) be the median of the means of the arms in S. Let τ = mini∈V (θ̂i) be the minimum
empirical mean for the selected arms in V . For each arm i among the top K arms in S, we define the random
variable Xi = 1{θ̂indi(S) < p+ ε

2} and X = 1
K

∑K
i=1(θindi(S)− p)Xi, where 1{·} is the indicator function. We

further define two events E1 = {X ≤ ε} and E2 = {τ < p + ε
2}. Our first claim is that E1 and E2 together

imply our conclusion valK(V ) ≥ valK(S)− ε.

Lemma A.1. E1 and E2 imply that valK(V ) ≥ valK(S)− ε.

Proof. Suppose both E1 and E2 hold. We first claim that

1

K

K∑
i=1

θindi(V ) ≥
1

K

K∑
i=1

(
(1−Xi)θindi(S) +Xip

)
. (6)

To see this claim, consider arm indi(S) for some i ∈ [K]. If Xi = 0 (i.e., θ̂indi(S) ≥ p+ ε
2 ), together with

E2, we have that

θ̂indi(S) ≥ p+
ε

2
> τ = min

i∈V
(θ̂i).

Hence, the arm should be included in the output set V . Moreover, since it is one of the best K arms in S, it
is also one of the best K arms in V . Hence, for each term on the right hand side of (6) with Xi = 0, there
is exactly one term with the same value on the left hand side.

Since there are |S|/2 ≥ K + |S|/4 arms with means greater or equal to p, after removing |S|/4 of them,
there are still at least K such arms. Therefore we know that the best K arms of V all have means greater
than or equal to p. In other words, each term on the left hand side of (6) is greater than or equal to p. This
proves (6). Now, we can see that

valK(V ) =
1

K

K∑
i=1

θindi(V ) ≥
1

K

K∑
i=1

(
(1−Xi)θindi(S) +Xip

)
=

1

K

K∑
i=1

θindi(S) −
1

K

K∑
i=1

(θindi(S) − p)Xi ≥ valK(S)− ε,

where the last inequality is due to E1.

In light of Lemma A.1, it suffices to show that the probability that both E1 and E2 happen is at least
1− δ. First, we bound Pr[E1] in the following lemma.
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Lemma A.2. Pr[E1] ≥ 1− δ

2
.

Before proceeding to the proof of the lemma, we state the following versions of the standard Chernoff-
Hoeffding bounds, which will be useful later.

Proposition A.3. Let Xi(1 ≤ i ≤ n) be independent random variables with values in [0, 1]. Let X =
1
n

∑n
i=1Xi. The following statements hold:

1. For every t > 0, we have that

Pr
[
|X −E[X]| > t

]
< 2 exp(−2t2n).

2. Suppose E[Xi] < a for some real 0 ≤ a ≤ 1. For every t > 0, we have that

Pr [X > a+ t] <

((
a

a+ t

)a+t(
1− a

1− a− t

)1−a−t
)n

.

3. For every ε > 0, we have that

Pr
[
|X < (1− ε)E[X]

]
< exp(−ε2nE[X]/2), and

Pr
[
|X > (1 + ε)E[X]

]
< exp(−ε2nE[X]/3).

Besides the above standard Chernoff-Hoeffding bounds, we also need the following Chernoff-type concen-
tration inequality.

Proposition A.4. Let Xi(1 ≤ i ≤ K) be independent random variables. Each Xi takes value ai (ai ≥ 0)

with probability at most exp(−a2i t) for some t ≥ 0, and 0 otherwise. Let X = 1
K

∑K
i=1Xi. For every ε > 0,

when t ≥ 2
ε2 , we have that

Pr [X > ε] < exp
(
−ε2tK/2

)
.

Proof of Proposition A.4. The proof is similar to that for the standard Chernoff bound. First, we observe
that

Pr[X > ε] = Pr

[
K∑
i=1

Xi > εK

]
= Pr

[
K∑
i=1

εtXi > ε2tK

]
= Pr

[
exp

(
K∑
i=1

εtXi

)
> exp(ε2tK)

]

≤ E

[ exp
(∑K

i=1 εtXi

)
exp(ε2tK)

]
=

∏K
i=1 E[exp(εtXi)]

exp(ε2tK)
, (7)

where the first inequality follows from Markov inequality and the last equality holds due to independence.
Now, we claim that

E[exp(εtXi)] ≤ exp
(
ε2tK/2

)
.

By the definition of Xi, combined with the fact that a(ε− a) ≤ ε2/4 for any real value a, it holds that

E[eεtXi ] ≤ exp(εat− a2t) + 1 = exp(a(ε− a)t) + 1 ≤ exp
(
ε2t/4

)
+ 1.

When ε2t ≥ 2, we have exp
(
ε2t/2

)
− exp

(
ε2t/4

)
> 1.06 > 1 and hence E[eεtXi ] ≤ exp

(
ε2t/2

)
. Plugging this

bound into (7), we get that

Pr[X > ε] ≤
∏K
i=1 exp

(
ε2t/2

)
exp(ε2tK)

= exp

(
−ε

2tK

2

)
.

The proof is completed.
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With the concentration inequality in place, now we are ready to prove Lemma A.2.

Proof of Lemma A.2. Recall that Q0 = Q
|S| is the number of samples taken from each arm in S. By the

definition of ε in Lemma A.2, we trivially have that ε ≥ max

{√
10
Q0
,
√

4 ln(2/δ)
Q0K

}
. For each i ∈ [K], let

ηi = max{θindi(S) − p− ε
2 , 0} and let Yi = ηiXi. By Proposition A.3(1), we have that

Pr[Yi = ηi] = Pr[Xi = 1] = Pr
[
θ̂indi(S) < p+

ε

2

]
= Pr

[
θ̂indi(S) < θindi(S) − (θindi(S) − p−

ε

2
)
]

≤ exp

(
−2
(
θindi(S) − p−

ε

2

)2
·Q0

)
≤ exp

(
−η2i · 2Q0

)
.

Applying Proposition A.4 on Yi’s, we can get that

Pr

[
1

K

K∑
i=1

Yi >
ε

2

]
≤ exp

(
−ε

2Q0K

4

)
≤ δ

2
,

where the last inequality holds because ε ≥
√

4 ln(2/δ)
Q0K

. Observe that Yi ≥ (θindS(i)− p)Xi− ε
2 for all i ∈ [K].

Therefore, with probability at least 1− δ
2 , we have that

X =
1

K

K∑
i=1

(θindi(S) − p)Xi ≤
1

K

K∑
i=1

Yi +
ε

2
≤ ε.

This completes the proof of Lemma A.2.

Next, we bound the probability that E2 happens in the following lemma.

Lemma A.5. Pr[E2] ≥ 1− δ

2
.

Proof. First, we can see that E2 holds if and only if there are no more than 3|S|/4 arms with empirical mean

larger than p + ε
2 . Define the indictor random variable Zi = 1{θ̂indi(S) ≥ p + ε

2}. Hence, it suffice to show

that Pr
[∑|S|

i=|S|/2 Zi <
|S|
4

]
≥ 1− δ

2 .

Let us only consider the arms with indices i ∈ [|S|/2, |S|] (i.e., θi ≤ p). By Proposition A.3(1), we have

Pr
[
θ̂indi(S) ≥ p+

ε

2

]
≤ Pr

[
θ̂indi(S) ≥ θindi(S) +

ε

2

]
≤ exp

(
−ε

2

2
·Q0

)
. (8)

From (8), we can see that E[Zi] < exp
(
− ε

2

2 ·Q0

)
. Let µ = maxi∈[|S|/2,|S|] E[Zi] and we have µ <

exp
(
− ε

2

2 ·Q0

)
. Then, by Proposition A.3(2), we have

Pr

 |S|∑
i=|S|/2

Zi >
|S|
4

 ≤

((
µ

1/2

)1/2(
1− µ
1/2

)1/2
)|S|/2

≤
(√

2µ ·
√

2
)|S|/2

≤ exp

(
|S|
2

(
ln(2)− ε2

2
·Q0

))
≤ exp

(
−|S|

2
· ε

2

4
·Q0

)
≤ exp

(
−ε

2K

2
·Q0

)
≤ δ

2
.

where the third to last inequality follows because of ε >
√

10
Q0

, the second to last inequality uses the

assumption that |S|/4 ≥ K and the last inequality holds because we assume that ε ≥
√

4 ln(2/δ)
Q0K

.

Proof of Lemma 4.1. By Lemma A.2, Lemma A.5, and a union bound, we have Pr[E1 and E2] ≥ 1 − δ. By
Lemma A.1, we have Pr[valK(T ) ≥ valK(S)− ε] ≥ Pr[E1 and E2] and then the lemma follows.
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B Proof of the Correctness of the AR Algorithm (Lemma 4.2 in
the Main Text)

Lemma 4.2 Let (S′, T ′) be the output of the algorithm AR(S, T,K,Q). For every δ > 0, with probability 1−δ,
we have that

totK−|T ′|(S
′) + tot|T ′|(T

′) ≥ totK−|T |(S) + tot|T |(T ) − εK,

where ε =

√
|S|
Q

(
4 + log(2/δ)

K

)
.

Proof. Recall that Q0 = Q
|S| is the number of samples taken from each arm in S. Also recall that K ′ = K−|T |.

We need to define a few notations. Let U1 = T ′ \ T denote the set of arms we added to T ′ in this round.
Let U2 = S \ (S′∪U1) be the set of arms we discarded in this round. Let U∗1 be the set of |U1| arms in S with
largest θi’s; let U∗2 be the set of |U2| arms in S with smallest θi’s. Ideally, if U1 = U∗1 and U2 = U∗2 , we do
not lose anything in this round (i.e., totK−|T ′|(S

′) + tot|T ′|(T
′) = totK−|T |(S) + tot|T |(T )). When U1 6= U∗1

and/or U2 6= U∗2 , we can bound the difference between totK−|T ′|(S
′)+ tot|T ′|(T

′) and totK−|T |(S)+ tot|T |(T )
by the sum of the difference between U∗1 and U1, and the difference between U∗2 and U2. More concretely,
we claim that

(
totK−|T ′|(S

′) + tot|T ′|(T
′)
)
−
(
totK−|T |(S) + tot|T |(T )

)
≥

∑
i∈U∗2

θi −
∑
i∈U2

θi

−
∑
i∈U1

θi −
∑
i∈U∗1

θi

 . (9)

The proof of (9) is not difficult, but somewhat tedious, and we present it at the end of this section. From
now on, we assume (9) is true.

For every t ≤ K, for every set U ⊆ S of t arms (i.e. |U | = t), by Proposition A.3, we have

Pr

[∣∣∣∣∣∑
i∈U

θ̂i −
∑
i∈U

θi

∣∣∣∣∣ > εK

4

]
≤ 2 exp

(
−ε

2

8
·Q0

K2

t

)
≤ 2 exp

(
−ε

2

8
·Q0K

)
.

By a union bound over all subset of size at most K, we have that

Pr

[
∀U ⊆ S, |U | ≤ K :

∣∣∣∣∣∑
i∈U

θ̂i −
∑
i∈U

θi

∣∣∣∣∣ ≤ εK

4

]
≥ 1− 2 · 2|S| exp

(
−ε

2

8
·Q0K

)
≥ 1− 2 exp

(
|S| − ε2

8
·Q0K

)
≥ 1− δ,

where we used the facts that |S| < 4K and ε ≥
√

1
Q0

(
4 + ln(2/δ)

K

)
.

Thus, with probability at least 1− δ, all of the following four inequalities hold:∣∣∣∣∣∑
i∈U1

θ̂i −
∑
i∈U1

θi

∣∣∣∣∣ ≤ εK

4
,

∣∣∣∣∣∣
∑
i∈U∗1

θ̂i −
∑
i∈U∗1

θi

∣∣∣∣∣∣ ≤ εK

4
,

∣∣∣∣∣∑
i∈U2

θ̂i −
∑
i∈U2

θi

∣∣∣∣∣ ≤ εK

4
,

∣∣∣∣∣∣
∑
i∈U∗2

θ̂i −
∑
i∈U∗2

θi

∣∣∣∣∣∣ ≤ εK

4
.

Therefore we have ∑
i∈U1

θi ≥
∑
i∈U1

θ̂i −
εK

4
≥
∑
i∈U∗1

θ̂i −
εK

4
≥
∑
i∈U∗1

θi −
εK

2
, and (10)
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∑
i∈U2

θi ≤
∑
i∈U2

θ̂i −
εK

4
≤
∑
i∈U∗2

θ̂i −
εK

4
≤
∑
i∈U∗2

θi −
εK

2
. (11)

Combining (9), (10) and (11), we get (9) ≥ −εK, which concludes the proof.

Proof of (9). For ease of notation, for any subset S of arms, we let θ(S) =
∑
i∈S θi. One can easily see that(

totK−|T ′|(S
′) + tot|T ′|(T

′)
)
−
(
totK−|T |(S) + tot|T |(T )

)
= totK−|T ′|(S

′)− totK−|T |(S) + θ(U1)

= totK−|T ′|(S
′)− totK−|T ′|(S \ U∗1 ) + (θ(U1)− θ(U∗1 ))

≥ totK−|T ′|(S
′)− totK−|T ′|(S \ U1) + (θ(U1)− θ(U∗1 )) . (12)

Let Ũ2 be the |U2| arms with the smallest means in S \ U1. By definition we have 1) |Ũ2| = |U∗2 |; 2)

Ũ2 ∩ U1 = U2 ∩ U1 = ∅; 3) θ(Ũ2) ≥ θ(U∗2 ).
Since |U1| + |U2| + (K − |T ′|) ≤ |S|, the (K − |T ′|) arms with largest means in S \ U1 do not intersect

with the |U2| arms with smallest means in S \ U1 (namely Ũ2). Therefore, we have that

totK−|T ′|(S \ U1) = totK−|T ′|((S \ U1) \ Ũ2). (13)

On the other hand, for every set W of arms, define totmin
t (W ) to be the sum of the t smallest means among

the arms in W . Let t = |S| − |U1| − |U2| − (K − |T ′|). Since Ũ2 consists of the arms with the smallest means
in S \ U1, we have

totmin
t ((S \ U1) \ Ũ2) ≥ totmin

t ((S \ U1) \ U2).

Together with the facts that

totmin
t ((S \ U1) \ Ũ2) = θ((S \ U1) \ Ũ2)− totK−|T ′|((S \ U1) \ Ũ2), and

totmin
t ((S \ U1) \ U2) = θ(S \ U1) \ U2)− totK−|T ′|((S \ U1) \ U2),

we can see that

θ(S \ U1) \ Ũ2)− totK−|T ′|((S \ U1) \ Ũ2) ≥ θ(S \ U1) \ U2)− totK−|T ′|((S \ U1) \ U2).

Equivalently, we have that

totK−|T ′|((S \ U1) \ U2)− totK−|T ′|((S \ U1) \ Ũ2) ≥ θ(Ũ2)− θ(U2). (14)

By combining (12), (13) and (14), and the observations that S′ = (S \U1) \U2 and θ(Ũ2) ≥ θ(U∗2 ), we have
proved (9).

C Proof of the Main Theorem (Theorem 4.3 in the Main Text)

Theorem 4.3 For every δ > 0, with probability at least 1−δ, the output of OptMAI algorithm T is an ε-optimal

solution (i.e., valK(T ) ≥ valK([n])− ε) with ε = O

(√
n
Q

(
1 + ln 1/δ

K

))
.

Proof. Recall r is the counter of the number of iterations in Algorithm 1. Let r0 be the first r such that we
have |Sr| < 4K. Let r1 be the final value of r. For any positive integer r, let

δr = e−.1r(1− e−.1)δ and εr = O

√ ( 3
4 )rn

(1− β)βrQ

(
1 +

ln 1/δr
K

) .
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For r < r0, by Lemma 4.1, with probability 1 − δr, we have that valK(Sr+1) ≥ valK(Sr) − εr. By union

bound, with probability 1−
∑r0−1
r=0 δr, we have that

valK(Sr0) ≥ valK([n])−
r0−1∑
r=0

εr. (15)

For r : r0 ≤ r < r1, by Lemma 4.2, with probability 1− δr, we have that(
totK−|Tr+1|(Sr+1) + tot|Tr+1|(Tr+1)

)
−
(
totK−|Tr|(Sr) + tot|Tr|(Tr)

)
≥ K · εr

Since Tr1 has exactly K elements and Tr0 = ∅, by union bound, with probability 1 −
∑r1−1
r=r0

δr, we can see
that

valK(Tr1) ≥ valK(Sr0)−
r1−1∑
r=r0

εr. (16)

Now, by a union bound over both (15) and (16), we have that, with probability 1−
∑r1−1
r=0 δr ≥ 1− δ,

valK([n])− valK(Tr1) ≤
r1−1∑
r=0

εr =

r1−1∑
r=0

O

(√(
3/4

β(1− β)

)r (
n

Q

)(
1 +

ln 1/δr
K

))

≤
r1−1∑
r=0

O

(√(
3/4

β(1− β)

)r (
n

Q

)(
1 +

ln 1/δ + 0.1r + ln(1− e−.1)

K

))

= O

(√
n

Q

(
1 +

ln 1/δ

K

))
.

This completes the proof of the theorem.

D An Alternative to the AR Procedure

We can replace the AR procedure by the following uniform sampling procedure B(Sr,K, ε
′, δ′), when the

number of remaining arms |Sr| is at most 4K. Using this alternative procedure, we can achieve the same
asymptotic sampling complexity, and its analysis is slightly simpler. However, its performance in practice
is worse than the AR procedure. Note that the condition |Sr| ≤ 4K is crucial for the uniform sampling
procedure to achieve the desired sample complexity (otherwise, we need to pay an extra log n factor. See
Section E for more information).

More specifically, the algorithm takes as input the remaining subset of arms Sr ⊆ [n], an integer K, and
two real numbers ε′, δ′ > 0 as input, and outputs a set T ⊆ Sr such that |T | = K. We set ε′ = ε/2, δ′ = δ/2.
Note that we only run B(Sr,K, ε

′, δ′) once and its output T is our final output of the entire algorithm. The
algorithm proceeds as follows.

• Sample each arm i ∈ Sr for

Q0 = QB(K, ε′, δ′) =
2(K ln(e|Sr|/K) + ln(2/δ′))

ε′2K
= O

(
1

ε′2

(
1 +

log 1/δ′

K

))
.

times and let θ̂i be the empirical mean of arm i.

• Output the set T ⊆ Sr which is the set of K arms with the largest empirical means.
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It is easy to see the number of samples is bounded by |Sr|Q0 ≤ O
(
K
ε′2

(
1 + log 1/δ′

K

))
. The above

algorithm can achieve the following performance guarantee.

Lemma D.1. Let T be the output of the algorithm B(Sr,K, ε
′, δ′). With probability 1 − δ′, we have that

valK(T ) ≥ valK(Sr)− ε′.

Proof. For every set U ⊆ Sr of K arms (i.e. |U | = K), by Proposition A.3(1), we have

Pr

[∣∣∣∣∣ 1

|U |
∑
i∈U

θ̂i −
1

|U |
∑
i∈U

θi

∣∣∣∣∣ > ε′

2

]
≤ 2 exp

(
−ε
′2

2
·Q0K

)
.

By union bound over all subsets of size K, we have that

Pr

[
∀U ⊆ Sr, |U | = K :

∣∣∣∣∣ 1

|U |
∑
i∈U

θ̂i −
1

|U |
∑
i∈U

θi

∣∣∣∣∣ ≤ ε′

2

]
≥ 1− 2

(
|Sr|
k

)
exp

(
−ε
′2

2
·Q0K

)

≥ 1− 2

(
e|Sr|
K

)K
exp

(
−ε
′2

2
·Q0K

)
= 1− 2 exp

(
K log(e|Sr|/K)− ε′2

2
·Q0K

)
≥ 1− δ′.

Let T ∗ be the set of K arms in Sr with largest θi’s. With probability at least 1− δ′, we have∣∣∣∣∣ 1

|T |
∑
i∈T

θ̂i −
1

|T |
∑
i∈T

θi

∣∣∣∣∣ ≤ ε′

2
,

∣∣∣∣∣ 1

|T ∗|
∑
i∈T∗

θ̂i −
1

|T ∗|
∑
i∈T∗

θi

∣∣∣∣∣ ≤ ε′

2
.

Therefore, we can get that

valK(T ) =
1

|T |
∑
i∈T

θi ≥
1

|T |
∑
i∈T

θ̂i −
ε′

2
≥ 1

|T ∗|
∑
i∈T∗

θ̂i −
ε′

2
≥ 1

|T ∗|
∑
i∈T∗

θi − ε′ = valK(Sr)− ε′.

If we set Q = O
(
n
ε2

(
1 + ln(1/δ)

K

))
in OPTMAI, the proof of Theorem 4.3 show that, after the QE

stage, the set Sr of remaining arms satisfies that val([n])− valK(Sr) ≤ ε/2 with probability at least 1− δ/2.
Combined with the conclusion of Lemma D.1 and ε′ = ε/2, δ′ = δ/2, we get that val([n])− valK(T ) ≤ ε with
probability at least 1 − δ. The number of samples used in both QE and the uniform sampling stages is at

most Q+ |Sr|Q0 = O
(
n
ε2

(
1 + ln(1/δ)

K

))
, which is the same as the sample complexity stated in Corollary 4.4.

E Naive Uniform Sampling

As we have seen in Section D, we can use a uniform sampling procedure to replace AR. We show in this
section that, simply using following naive uniform sampling as the entire algorithm is not sufficient to achieve
the linear sample complexity.
Naive Uniform Sampling:

• Sample each arm i ∈ S for Q0 times and let θ̂i be the empirical mean of arm i.

• Output the set T ⊆ S which is the set of K arms with the largest empirical means.

In fact, when K = 1, Even-Dar et al. (2006) showed that Q0 = O( 1
ε2 log n

δ ) (note this is log n factor worse
than the optimal bound) is enough to identify an ε-optimal arm with probability at least 1− δ. For general
K, by following the same proof of Lemma D.1, we can show that

Q0 = O

(
1

ε2

(
log

n

K
+

log 1/δ

K

))
(17)

suffices for identifying an ε-optimal solution with probability at least 1− δ. Moreover, we can also show the
bound (17) is essential tight for naive uniform sampling, as in the following theorem.
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Theorem E.1. Suppose that for any multiple arm identification problem instance and any 0 < ε, δ < 0.01
and 1 ≤ K ≤ n/2, the naive uniform sampling algorithm with parameter Q0 can find an ε-optimal solution

with probability at least 1− δ. Then, it must hold that Q0 = max
{

Ω
(

1
ε2 log n

K

)
,Ω
(

1
ε2

log 1/δ
K

)}
.

Proof. In fact, the second lower bound Ω
(

1
ε2

log 1/δ
K

)
holds for any algorithm (including the uniform sampling

algorithm), which is proved in Lemma 5.4. So, we only focus on the first lower bound in this proof. Let C be
a sufficiently large constant (C > 210000 suffices). First we consider the case where 1 ≤ K ≤ n/C. Consider
the instance which consists of K Bernoulli arms with mean 1/2 + 4ε (denoted as set A) and n−K Bernoulli
arms with mean 1/2 (denoted as set B). It is easy to see that any ε-optimal solution must contain at least
3
4K arms from A. Let Q0 = 1

400ε2 log n
K . Now, we show that with probability at least 0.05, there are at least

K/4 arms from B whose empirical mean is at least 1/2 + 8ε and at least K/4 arms from A whose empirical
mean is smaller than 1/2 + 8ε. We denote the former event by E1 and the later by E2. Note that if the event
that both E1 and E2 happen implies that we fail to find an ε-optimal solution.

First, let us consider E1. Let Yi = 1{θ̂i ≥ 1/2 + 8ε}. For any arm i in B, we have that

Pr[Yi = 1] = Pr[θ̂i ≥ 1/2 + 8ε] =

(
1

2

)Q0 Q0∑
i=(1/2+8ε)Q0

(
Q0

i

)
≥
(

1

2

)200Q0ε
2

≥
( n
K

)−1/2
,

where the second to last inequality follows from the fact that
∑
k≤αm

(
m
k

)
≥ 2mH(α)−logm (H(α) is the

binary entropy function) Ronald et al. (1989) and the Tylor expansion of H(α) around 1/2: H(1/2 − ε) '
1−2ε2/ ln 2+o(ε2). Therefore, in expectation, there are at least (n−K)

(
n
K

)−1/2
arms in B whose empirical

mean is at least 1/2 + 8ε, i.e., E[
∑
i∈B Yi] ≥ (n −K)

(
n
K

)−1/2
. Using Proposition A.3(3), we can see that

(for n ≥ CK ≥ C)

Pr

[∑
i∈B

Yi <
K

4

]
≤ exp

(
−
(

1

2

)2

(n−K)
( n
K

)−1/2
/2

)
< 0.05,

where we use the fact that (n−K)
(
n
K

)−1/2 ≥ K/2 in the first inequality, and that (n−K)
(
n
K

)−1/2 ≥ n−1√
n

for 1 ≤ K ≤ n/2 in the second. Hence, with probability at least 0.95, there are at least K/4 arms in B
whose empirical mean is at least 1/2 + 8ε.

For any arm in A, using Proposition A.3(2), we can see that

Pr[θ̂i ≥ 1/2 + 8ε] ≤ exp

(
−1

4
ε2
(

1

2
+ 4ε

)
Q0/3

)
< 0.5,

in which the last inequality holds because Q0 ≥ 1
400ε2 logC. Let Zi = 1{θ̂i ≥ 1/2 + 8ε}. Let µ =

exp
(
− 1

4ε
2
(
1
2 + 4ε

)
Q0/3

)
< 0.5. Then, by Proposition A.3(2), we have

Pr[¬E2] = Pr

[∑
i∈A

Zi >
3K

4

]
≤

((
µ

3/4

)3/4(
1− µ
1/4

)1/4
)K

< 0.877.

The last inequality holds since ( µ
3/4 )3/4( 1−µ

1/4 )1/4 is an increasing function on [0, 0.5], thus is maximized

at u = 0.5. Hence, Pr[E2] ≥ 0.1. So, we have Pr[E1 and E2] ≥ 0.05 and the proof is complete for the case
K ≤ n/C. When, n/C ≤ K ≤ n/2, the desired bound becomes Ω(1/ε2), which follows from Theorem 5.1.

F Lower bounds

F.1 Proof of the First Lower Bound (Lemma 5.2 in the Main Text)

Lemma 5.2 Let A be an algorithm in Theorem 5.1, then there is an algorithm B which correctly outputs
whether a Bernoulli arm X has the mean 1

2 + 4ε or the mean 1
2 with probability at least 0.51, and B makes
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at most 200Q
n samples in expectation.

Proof. Given an algorithm A stated in Theorem 5.1, the construction of B is as follows. Recall that the goal
of B is to distinguish whether the given Bernoulli arm X has mean 1/2 or 1/2 + 4ε.

Algorithm 5 Algorithm B (which calls A as a subroutine)

1: Choose a random subset S ⊆ [n] such that |S| = K and then choose a random element j ∈ S.
2: Create n artificial arms as follows: For each i ∈ [n], i 6= j, let θi = 1

2 + 4ε if i ∈ S, let θi = 1
2 otherwise.

3: Simulate A as follows: whenever A samples the i-th arm:
(1) If i = j, we sample the Bernoulli arm X (recall X is the arm which B attempts to separate);
(2) Otherwise, we sample the arm with mean θi.

4: If the arm X is sampled by less than 200Q
n times and A returns a set T such that j 6∈ T , we decide that

X has the mean of 1
2 ; otherwise we decide that X has the mean of 1

2 + 4ε.

We note that in step 3(1), only when A attempts to sample the j-th (artificial) arm, we actually take a
sample from X. Since B stops and output the mean 1

2 + 4ε if the number of trials on X reaches 200Q
n , B

takes at most 200Q
n samples form X. Now, we B can correctly output the mean of X with the probability at

least 0.51.
We first show that when the Bernoulli arm X has mean 1

2 , B decides correctly with probability at least
0.51. Assuming that X has the mean 1

2 , among the n arms in the algorithm A, the arms in S \ {j} have
mean 1

2 +4ε, while others have mean 1
2 . For each i ∈ [n], let the random variable qi be the number of samples

taken from the i-th arm by A. We have ∑
i∈[n]

E[qi] ≤ Q.

Let the random variable qX be the number of samples taken from arm X and S′ = S \ {j}. Observe that
when conditioned on S′, for A, j is the same as any other arms in [n] \ S′, hence, j is uniformly distributed
among [n] \ S′. We have

E[qX ] = ES′
[
E[qX | S′]

]
= ES′

 1

n−K + 1

∑
i∈[n]\S′

E[qi | S′]


≤ 1

n−K + 1
ES′

∑
i∈[n]

E[qi | S′]

 ≤ 2

n

∑
i∈[n]

E[qi] ≤
2Q

n
,

where in the second equality we use the fact that j is uniformly distributed among [n] \ S′ conditioned on
S′, and in the second inequality we used the assumption that K ≤ n/2. Therefore, by Markov’s inequality,

Pr

[
qX ≥

200Q

n

]
< 0.01.

Let T be the output of the algorithm A. It is easy to see that valK([n]) = 1
2 + 4ε · (1 − 1

K ), and

valK(T ) = 1
2 + 4ε · |S

′∩T |
K . When A finds an ε-optimal solution (i.e., valK(T ) ≥ valK([n])− ε), we have

1

2
+ 4ε · |S

′ ∩ T |
K

≥ 1

2
+ 4ε ·

(
1− 1

K

)
− ε,

from which we can get that |S′ ∩ T | ≥ 3
4K − 1. Since A can find an ε-optimal solution with probability at

least 0.8, for any fixed subset S′, we have that

Pr

[
|S′ ∩ T | ≥ 3

4
K − 1

]
≥ Pr[valK(T ) ≥ valK([n])− ε] ≥ 0.8.
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Conditioned on S′, j is uniformly distributed among [n] \S′ and is independent from T . Therefore, we have

Pr[j ∈ T ] = ES′ [Pr[j ∈ T | S′]] = ES′,T

[
|([n] \ S′) ∩ T |
|[n] \ S′|

]
≤ 0.2× 1 + 0.8 ·

1
4K + 1

n−K + 1
≤ 0.2 + 0.8× (0.25 + 0.1) = 0.48,

where in the last inequality, we used the assumption that 10 ≤ K ≤ n/2. Therefore, when X has the mean
1
2 , we have that

Pr

[
B decides that X has mean

1

2

]
= Pr

[
j 6∈ T and qX ≤

200Q

n

]
≥ 0.52− 0.01 = 0.51.

Now we assume that X has the mean 1
2 + 4ε. The proof is similar as before. Among the n arms, the

arms in S have the mean 1
2 + 4ε, while others have the mean 1

2 . Again, let T be the output of the algorithm
A. Since with probability at least 0.8, we have that valK(T ) ≥ valK([n])− ε, we have

Pr

[
|S ∩ T | ≥ 3

4
K

]
≥ 0.8.

Since j is a uniformly distributed in S, and conditioned on S, j is independent from T , we have that

Pr[j ∈ T ] = ES
[

Pr[j ∈ T | S]
]

= ES,T

[
|S ∩ T |
|S|

]
≥ 0.8 · 3

4
≥ 0.6.

In sum, when X has the mean 1
2 + 4ε, we have that

Pr

[
B decides that X has mean

1

2
+ 4ε

]
≥ Pr [j ∈ T ] ≥ 0.6 > 0.51.

In either case, B makes the right decision with probability at least 0.51.

F.2 Proof of the Second Lower Bound (Lemma 5.4 and Theorem 5.5 in the
Main Text)

Lemma 5.4 Fix real numbers δ, ε such that 0 < δ, ε ≤ 0.01, and integers K,n such that K ≤ n/2. Let A be a
deterministic algorithm (i.e., the only randomness comes from the sampling the arms), so that for any set
of n Bernoulli arms with means θ1, θ2, . . . , θn,

• A makes at most Q samples in expectation;

• with probability at least 1− δ, A outputs a set T of size K with valK(T ) ≥ valK([n])− ε.

Then, we have that Q ≥ n ln(1/δ)
20000ε2K .

Proof of Lemma 5.4. Let t = b nK c ≥ 2 and we divide the first tK arms into t groups. The j-th group consists
of the arms with the index in [(j − 1)K + 1, jK] for j ∈ [t]. We first construct t hypotheses H1, H2, . . . ,Ht

as follows. In H1, we let θi = 1/2 + 4ε for arms in the first group and let θi = 1/2 for the remaining arms.
In Hj , where 2 ≤ j ≤ t, we let θi = 1/2 + 4ε when i is in the first group, θi = 1/2 + 8ε when i is in the j-th
group, and θi = 1/2 otherwise. For each j ∈ [t], let PrHj [·] denote the probability of the event in [·] under
the hypothesis Hj and EHj [·] the expected value of the random variable in [·] under the hypothesis Hj .

For each arm i ∈ [n], let the random variable qi be the number of times that A samples the i-th arm

before termination. For each j ∈ [t], let the random variable q̃j =
∑jK
i=(j−1)K+1 qi be the total number
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of trials of the arms in the j-th group. Since A makes at most Q samples in expectation, we know that

EH1

[∑t
j=2 q̃j

]
≤ EH1

[∑
i∈[n] qi

]
≤ Q. By an averaging argument, there exists j0 with 2 ≤ j0 ≤ t such that

EH1
[q̃j0 ] ≤ Q

t− 1
≤ 2Q

t
.

Using Markov’s inequality and letting Q0 = 8Q
t , we have PrH1 [q̃j0 ≥ Q0] ≤ EH1

[q̃j0 ]

Q0
≤ 1

4 , and hence,

PrH1
[q̃j0 ≤ Q0] ≥ 3

4
. (18)

Now we only focus on the hypotheses H1 and Hj0 . Let val
Hj
K (T ) (val

Hj
K ([n]) resp.) be valK(T ) (valK([n])

resp.) under the hypothesis Hj . In other words, val
Hj
K (T ) is the average mean value of the best K arms in

T , if the the means of the arms are dictated by hypothesis Hj .

Now, we assume for contradiction that Q < n ln(1/δ)
20000ε2K (i.e., Q0 <

ln(1/δ)
1250ε2 ). Let T denote the output of A.

First, using the assumption that

PrH1
[valH1

K (T ) ≥ valH1

K ([n])− ε] ≥ 1− δ (19)

(i.e., if the underlying hypothesis is H1, T is an ε-optimal solution), we can prove that:

PrHj0 [valH1

K (T ) ≥ valH1

K ([n])− ε] ≥
√
δ

4
. (20)

We further observe that when valH1

K (T ) ≥ valH1

K ([n]) − ε, T must consist of more than 3
4K arms from the

first group; while when val
Hj0
K (T ) ≥ val

Hj0
K ([n]) − ε, T must consist of more than 3

4K arms from the j0-th
group. Therefore, the two events are mutually exclusive and we have:

PrHj0

[
val

Hj0
K (T ) ≥ val

Hj0
K ([n])− ε

]
≤ 1− PrHj0

[
valH1

K (T ) ≥ valH1

K ([n])− ε
]

≤ 1−
√
δ

4
≤ 1− 2δ,

where the last inequality holds because δ < 0.01. This essentially says that if the underlying hypothesis is
Hj0 , the probability that A finds an ε-optimal solution is not large enough, which contradicts the performance
guarantees of the Algorithm A, and thus we conclude our proof.

Therefore, the remaining task is to prove (20). We first define a sequence of random variables Z0, Z1, Z2, . . . , ZQ0

where Z0 = 0. For each i ∈ [Q0], if the i-th trial of the j0-th group by A results in 1, let Zi = Zi−1 + 1;
if the result is 0, let Zi = Zi−1 − 1; if A terminates before the i-th trial of the j0-th group, let Zi = Zi−1.
Under hypothesis H0, the sequence {Z0, Z1, Z2, . . . , ZQ0} forms a martingale since arms in the j0-th group
are independent zero-mean random variables. Therefore, by Azuma-Hoeffding’s inequality, we have

Pr
H1

[
|ZQ0 | ≤

√
5Q0

]
> 1− 2 exp

(
− (
√

5Q0)2

2Q0

)
>

3

4
. (21)

By a union bound over (18), (19) and (21), we have

PrH1

[
valH1

K (T ) ≥ valH1

K ([n])− ε and q̃j0 ≤ Q0 and |ZQ0
| ≤

√
5Q0

]
≥ 1− δ − 1

4
− 1

4
≥ 1

4
. (22)

For ease of notation, we use E to denote the event that all of the following three events happen: (1)
valH1

K (T ) ≥ valH1

K ([n])− ε, (2) q̃j0 ≤ Q0 and (3) |ZQ0 | ≤
√

5Q0.
Suppose that A uses exactly Q′ trials. We call a string y = ((i1, b1), (i2, b2), . . . , (iQ′ , bQ′)) a transcript

for a particular execution of A if the r-th trial (1 ≤ r ≤ Q′) performed by A is the ir-th arm and the result
is br ∈ {0, 1}. Let Y be the set of transcripts for A. For each y ∈ Y, we define the following quantities:
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• Let ui0(y) be the number of (i, 0) pairs in y and ui1(y) be the number of (i, 1) pairs in y;

• Let qi(y) = ui0(y) + ui1(y) be the number of times A takes sample from the i-th arm in y;

• Let ũj0(y) =
∑jK
i=(j−1)K+1 u

i
0(y) be the number of times that sampling from the j-th group results 0;

ũj1(y) =
∑jK
i=(j−1)K+1 u

i
1(y) be the number of times that sampling from the j-th group results 1;

• For all j ∈ [t], let q̃j(y) =
∑jK
i=(j−1)K+1 qi(y) = ũj0(y) + ũj1(y) be the total number of samples taken

from the j-th group in y.

• let T (y) be the output of A when the transcript generated by A is y (note that the output of A is
completed determined by y since A is deterministic).

Let the random variable Y be the transcript generated by A. We use Ey to denote the event that

valH1

K (T (y)) ≥ valH1(K) − ε and q̃j0(y) ≤ Q0 and |ũj00 (y) − ũj01 (y)| ≤
√

5Q0. It is not hard to see that an
equivalent way to write (22) is as follows:∑

y∈Y
1 {Ey} · PrH1 [Y = y] ≥ 1

4
. (23)

Now, we claim that for any y ∈ Y, when Ey is true, we have that

PrHj0 [Y = y]

PrH1
[Y = y]

≥
√
δ. (24)

Therefore, we have

PrHj0

[
valH1

K (T ) ≥ valH1

K ([n])− ε
]
≥PrHj0 [E ] =

∑
y∈Y

1 {Ey} · PrHj0 [Y = y]

≥
∑
y∈Y

1 {Ey} · PrH1 [Y = y] ·
√
δ ≥
√
δ

4
,

where the second inequality is because of (24), and the last inequality is because of (23). Therefore, we
finish the proof of the Eq. (20), which concludes the proof the lemma.

What remains is to prove the claim (24). Fix a y ∈ Y. We first express PrH1
[Y = y] and PrHj0 [Y = y]

in terms of ũ and q̃:

1. PrH1
[Y = y] =

(
1
2 + 4ε

)ũ1
1(y)

(
1
2 − 4ε

)ũ1
0(y)∏t

j=2

(
1
2

)q̃j(y)
;

2. PrHj0 [Y = y] =
(
1
2 + 4ε

)ũ1
1(y)

(
1
2 − 4ε

)ũ1
0(y) (1− 16ε)

ũ
j0
0 (y)

(1 + 16ε)
ũ
j0
1 (y)∏t

j=2

(
1
2

)q̃j(y)
.

Taking the ratio, we obtain that

PrHj0 [Y = y]

PrH1 [Y = y]
= (1− 16ε)

ũ
j0
0 (y)

(1 + 16ε)
ũ
j0
1 (y)

= (1− 16ε)
q̃j0

(y)

2 +
ũ
j0
0 (y)−ũj01 (y)

2 (1 + 16ε)
q̃j0

(y)

2 − ũ
j0
0 (y)−ũj01 (y)

2

= (1− 256ε2)
q̃j0

(y)

2

(
1− 16ε

1 + 16ε

) ũ
j0
0 (y)−ũj01 (y)

2

≥ (1− 256ε2)
q̃j0

(y)

2 (1− 32ε)

∣∣∣∣∣ ũj00 (y)−ũj01 (y)

2

∣∣∣∣∣
. (25)

When both q̃j0(y) ≤ Q0 and |uj00 (y)− uj01 (y)| ≤
√

5Q0 hold, we have (recall that Q0 ≤ ln(1/δ)
1250ε2 )

(1− 256ε2)
q̃j0

(y)

2 (1− 32ε)

∣∣∣∣∣ ũj00 (y)−ũj01 (y)

2

∣∣∣∣∣ ≥ (1− 256ε2)Q0/2(1− 32ε)
√
5Q0/2

≥ (1− 256ε2)
ln(1/δ)

2500ε2 (1− 32ε)

√
ln(1/δ)

30ε ≥ δ1/4 · δ1/4 =
√
δ,

where in the penultimate inequality we used the assumption that 0 < δ ≤ 0.01. This proves (24).
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Theorem 5.5 Fix real numbers δ, ε such that 0 < δ, ε ≤ 0.01, and integers K,n, where K ≤ n/2. Let A be a
(possibly randomized) algorithm so that for any set of n arms with the mean θ1, θ2, . . . , θn,

• A makes at most Q samples in expectation;

• With probability at least 1− δ, A outputs a set T of size K with valK(T ) ≥ valK([n])− ε.

We have that Q = Ω
(n ln(1/δ)

ε2K

)
.

Proof of Theorem 5.5. We show that essentially the same lower bound also holds for any randomized algo-
rithm. The following argument is standard and we include it for completeness. Fix 0 < ε, δ < 1/2. We
assume, for contradiction, that there is a randomized algorithm A which can achieve the same performance

guarantee stated as in the theorem, but the expected number Q of samples is no more than n log(1/δ)
100000ε2K . We

can view the randomized algorithm A as a deterministic algorithm with a sequence S of random bits. We
use R to denote the randomness from the arms. Note that if we fix S and R, the execution and the output
of the algorithm are fixed. We use A(S,R) = 1 to denote the event that the output of A is an ε-optimal
solution. Let us use Q(S,R) to denote the number of samples taken by A. The performance guarantee of A
is that

PrS,R[A(S,R) = 1] = ES,R[A(S,R)] = ES ER[A(S,R) | S] ≥ 1− δ.

This is equivalent to say that ES ER[1−A(S,R) | S] ≤ δ. By Markov inequality, we have that PrS

[
ER[1−

A(S,R) | S] ≥ 2δ
]
≤ 1/2. Equivalently, we have that

PrS

[
ER[A(S,R) | S] ≥ 1− 2δ

]
≥ 1/2. (26)

By our assumption, we have ES,RQ(S,R) ≤ n log(1/δ)
100000ε2K . So, by Markov inequality,

PrS

[
ER[Q(S,R) | S] ≤ n log(1/δ)

40000ε2K

]
≥ 3

5
. (27)

Combining (26) and (27), we know there is a particular random sequence S such that both ER[A(S,R) |
S] ≥ 1 − 2δ and ER[Q(S,R) | S] ≤ n log(1/δ)

40000ε2K hold. Since the algorithm A with a particular sequence S is
simply a deterministic algorithm, this contradicts the lower bound we proved for any deterministic algorithm
in Lemma 5.4.

Theorem F.1. Fix real numbers δ, ε such that 0 < δ, ε ≤ 0.01, and integers K,n, where n/2 ≤ K < n. Let
A be a (possibly randomized) algorithm such that for any multiple arm identification instance, A can outputs
an ε-optimal set T of size K, with probability at least 1 − δ, using at most Q samples in expectation. We
have that

Q = Ω
(n−K

K
· n
ε2

)(n−K
K

+
ln 1/δ

K

)
.

.

Proof. In fact, in the proof of Theorem 4.5, we have established the equivalence between the problem of
find an ε-optimal solution of size K and an ε′-optimal solution of size n − K, where ε′ = K

n−K · ε. Since
n −K ≤ n/2, we can use the lower bounds developed in Theorem 5.1 and Theorem 5.5, which show that

Q should be at least Q = Ω
(
n
ε′2

(
1 + ln(1/δ)

n−K

))
. Plugging in ε′ = K

n−K · ε, we obtain the desired lower

bound.
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(a) θ ∼ TN(0.5, 0.2), Q = 20 · n
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(b) θ ∼ TN(0.5, 0.2), Q = 50 · n
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(c) θ ∼ TN(0.5, 0.2), Q = 100 · n
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(d) θ ∼ Beta(4, 1), Q = 20 · n
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(e) θ ∼ Beta(4, 1), Q = 50 · n
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(f) θ ∼ Beta(4, 1), Q = 100 · n

Figure 3: Performance comparison on simulated data.

G Additional Experiments

In this section, we provide additional simulated experimental results when using the following two different
ways to generate {θi}ni=1:

1. θ ∼ TN(0.5, 0.2) : each θi is generated from a truncated normal distribution with mean 0.5, the
standard deviation 0.2 and the support [0, 1] (Figure 3(a) to Figure 3(c)).

2. θ ∼ Beta(4, 1) : each θi is generated from a Beta distribution with the parameters (4, 1). The {θi} from
Beta(4, 1) are close to the workers’ accuracy in real crowdsourcing applications, where most workers
perform reasonably well and the averaged accuracy is around 80% (Figure 3(d) to Figure 3(f)).

We note that the number of total arms is set to n = 1000. We vary the total budget Q = 20n, 50n, 100n and
K = 10, 20, . . . , 500. We use different ways to generate {θi}ni=1 and report the comparison among different
algorithms. It can be seen from Figure 1 that our method outperforms the SAR and LUCB in most of the
scenarios. In addition, we also observe that when K is large, the setting of β = 0.8 outperforms that of
β = 0.9; while for small K, β = 0.9 is a better choice.
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