Densest/Heaviest *k*-subgraph on Interval Graphs, Chordal Graphs and Planar Graphs

Presented by Jian Li, Fudan University

Mar 2007, HKUST

May 8, 2006

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Problem Definition:

Densest k-Subgraph Problem(DS-k):

- Input:G(V, E), k > 0.
- Output: an induced subgraph D s.t. |V(D)| = k.
- Goal:Maximize |E(D)|.

Heaviest k-Subgraph Problem(HS-k):

- Input:G(V, E), $w: E \to R^+$,k > 0.
- Output: a induced subgraph D s.t. |V(D)| = k.
- Goal:Maximize $\sum_{e \in E(D)} w(e)$.

Previous Results

- NP-hard even on chordal graphs(Corneil,Perl.1984) and planar graphs(Keil,Brecht.1991).
- n^{δ} -approximation for some $\delta < 1/3$ (Feige,Kortsarz,Peleg.2001).
- *n*/*k*-approximation(Srivastav,Wolf.1998;Goemans,1999).
- No PTAS in general(Khot.2004).
- PTAS for dense graph(Arora, Karger, Karpinski.1995).

Previous Results

- Some better approximation for special k.
- HS-k is in P on trees(Maffioli.1991), co-graphs(Corneil,Perl.1984) and chordal graph if its clique graph is a path(Liazi,Milis,Zissimopoulos.2004).
- PTAS on chordal graph if its clique graph is a star(Liazi,Milis,Pascual,Zissimopoulos.2006).
- OPEN: complexity on interval graphs(even for proper interval graphs).

Our Results

- Proper interval graphs(unknown): PTAS.
- Chordal graphs(NP-hard): Constant approximation.
- Planar graphs(NP-hard): PTAS.

Densest disjoint clique *k*-subgraph(DDCS-*k*) problem: Find a (not necessarily induced) subgraph G'(V', E') such that

- |V'| = k;
- G' is composed with several vertex disjoint cliques;
- |E'| is maximized.

DDCS-*k* can be solved by Dynamic Programming: Let DS(i, l) be the optimal solution of DDCS-*l* problem on $G(V_{1...i})$.

$$DS(i,l) = \max_{(j,x)\in\mathcal{A}} \{ DS(j,x) + \binom{l-x}{2} \}$$

(ロ) (四) (E) (E) (E) (E)

where \mathcal{A} is the feasible integer solution set of the following constraints system:

 $1\leq j < i, 0\leq x \leq l, l-x \leq i-j, l-x \leq i-q_G(i)+1.$

An optimal DDCS-k solution is a 3-approximation of DS-k problem. We construct a DDCS-k solution OPT_{DDCS} from an optimal

solution OPT_{DS} of the DS-*k* problem such that $|OPT_{DDCS}| \ge 1/3 \cdot |OPT_DS|$.

Construction(Greedy):

- Repeatedly remove the vertices and all adjacent edges of a maximum clique from *OPT*_{DS}.
- Take OPT_{DDCS} as the union of these maximum cliques.

Def: *overlap number* $\kappa_G(v)$ as the number of maximal cliques in *G* containing *v*.

The *h*-overlap clique subgraph H is a subgraph of G such that $\kappa_H(v) \leq h$ for all $v \in V(H)$.

For example, a disjoint clique subgraph is a 1-overlap clique subgraph.

Proper Interval Graphs-PTAS

densest h-overlap clique *k*-subgraph(DOCS-(h, k)) problem: Find a (not necessarily induced) subgraph G'(V', E') such that

- |V'| = k;
- G' is a h-overlap clique subgraph of G;
- |E'| is maximized.

 $\mathsf{DOCS-}(h,k)$ can be also solved by dynamic problem if h is a constant.

Similarly, we construct a DOCS-(h, k) solution OPT_{DOCS} from an optimal solution OPT_{DS} of the DS-k problem such that $|OPT_{DOCS}| \ge (1 - \frac{4}{h/2-1}) \cdot |OPT_{DS}|.$

So, in order to get a $1-\epsilon$ approximation, it is enough to set $h=2+8/\epsilon$.

Proper Interval Graphs-PTAS

・ロト () 、 () , (

A graph is *chordal* if it does not contain an induced cycle of length k for $k \ge 4$.

A *perfect elimination order* of a graph is an ordering of the vertices such that Pred(v) forms a clique for every vertex v, where Pred(v) is the set of vertices adjacent to v and preceding v in the order.

Thm: A graph is chordal if and only if it has a perfect elimination order.

Maximum Density Subgraph Problem(MDSP)

- Input G(V, E), vertex weight $w : v \to \mathbb{R}^+$,
- Output: an induced subgraph G'(V', E').
- Goal: maximize the density $\frac{(\sum_{v \in V'} w(v) + |E'|)}{|V'|}$.

This problem can be solved optimally in polynomial time by reducing to a parametric flow problem [Gallo,Grigoriadis,Tarjan.1989]. Important Fact: $w(v) + d_{G'}(v) \ge \rho$.

The high level idea :

We run the above MSDP algorithm on our given graph with w(v) = 0 for all $v \in V$

- we get a subgraph G' of size k, we have exactly an optimal solution for the DS-k problem.
- If we get a smaller subgraph, we repeat the MSDP algorithm in the remaining graph and add the solution in.
- If we we get a larger subgraph, we need to pick some vertices in this subgraph to satisfy the cardinality constraint without losing much density.

Densest-k-Subgraph-Chordal(G(V,E))

1:
$$V_0 = \emptyset; i = 0;$$

2: i = i + 1;run MSDP in the remaining graph

 $G(V - V_{i-1}, E(V - V_{i-1}), w_i(v) = d(v, V_{i-1})$. let the optimal subgraph(subset of vertices) be V'_i and the density be ρ_i .

3: if
$$|V_{i-1}| + |V'_i| < k/2$$
 then

4:
$$V_i = V_{i-1} \cup V'_i$$
 and go back to step 2.

5: else if
$$k/2 \le |V_{i-1}| + |V'_i| \le k$$
 then

$$6: \quad V_i = V_{i-1} \cup V'.$$

7: else if
$$|V_{i-1}| + |V'_i| > k$$
 then

8:
$$V'' = Pick(V'_i, w_i)$$
 and $V_i = V_{i-1} \cup V''$;

9: end if

10: Arbitrary take $k - |V_i|$ remaining vertices into V_i .

$\operatorname{Pick}(V'_t, \mathbf{w})$

1: Compute a perfect elimination order for $V^\prime,\,{\rm say}$

$$\{v_1, v_2, \dots, v_m\}, m > k/2. V'' = \emptyset.$$

2: for i=m to 1 do

$$\begin{array}{lll} \textbf{3:} & \text{ if } |Pred_{V_t'}(v_i)| \geq \rho_t/2 \text{ then} \\ \textbf{4:} & \text{ if } |V''| + |Pred_{V_t'}(v_i)| + 1 \leq k/4 \text{ then} \\ \textbf{5:} & V'' = V'' \cup \{v_i\} \cup Pred_{V_t'}(v_i) \ . \\ \textbf{6:} & \text{ else if } k/4 < |V''| + |Pred_{V_t'}(v_i)| + 1 \leq k/2 \text{ then} \\ \textbf{7:} & V'' = V'' \cup \{v_i\} \cup Pred_{V_t'}(v_i); \text{ return } V''. \\ \textbf{8:} & \text{ else if } |V''| + |Pred_{V_t'}(v_i)| + 1 > k/2 \text{ then} \\ \textbf{9:} & \text{ Add into } V'' v_i \text{ and arbitrary its } k/2 - |V''| - 1 \\ & \text{ predecessors; return } V''. \end{array}$$

10: **end if**

11: else if
$$w(v_i) + |Succ_{V'_t}(v_i)| > \rho_t/2$$
 then

12:
$$V'' = V'' \cup \{v_i\}; ext{ If } |V''| > k/4 ext{ return } V'';$$

- 13: end if
- 14: end for

Suppose $OPT = G^*(V^*, E^*)$.

If $|E(SOL \cap V^*)| \ge |E^*|/2$, then the algorithm is a 1/2-approximation.

If not.....

Analysis Sketch:

Let $I_i = V_i \cap V^*$ and $R_i = V^* \setminus I_i$. Since we get the the optimal solution V'_i on MDSP instance $G(V - V_{i-1}, E(V - V_{i-1}), w_i(v) = d(v, V_{i-1})$ at step *i*, we have

$$\begin{split} \rho_i &= \frac{|E(V_i')| + d(V_{i-1}, V_i')}{|V_i'|} \geq \frac{|E(R_{i-1})| + d(V_{i-1}, R_{i-1})}{|R_{i-1}|} \geq \frac{|E(R_{i-1})| + d(I_{i-1}, R_{i-1})}{|R_{i-1}|} \\ &\geq \frac{|E(R_{i-1})| + d(I_{i-1}, R_{i-1})}{k} = \frac{|E^*| - |E(I_{i-1})|}{k} \geq \frac{|E^*| - |E(I_t)|}{k} \geq \frac{|E^*|}{2k} = \frac{\rho^*}{2}. \end{split}$$

<ロ> <同> <同> < 回> < 三> < 三> 三 三

for all $i \leq t$.

we can prove $\rho_i \ge \rho_{i+1}$ for all i. We can also prove if $\rho_i > k/4$ then i = 1. If $\rho_t > k/4$, and recall $d_{V_1}(v_1) \ge \rho_1 > k/4$, So, a clique of size at least k/4, a 16-approximation. If not,...

In Pick:

we can see

 $w(v) + d_{V''}(v) = w(v) + |Pred_{V''}(v)| + |Succ_{V''}(v)| \ge \rho_t/2.$

So

Planar Graph

Sketch:

- Decompose the planar graph into a series of *K*-outerplanar graphs.
- Solve the problem in each outerplanar graph.
- Recombine the solution.

Standard Baker's technique, but some more details...omit here.

Thank You!

 thanks to Jian XIA and Yan ZHANG for discussions on proper interval graphs.