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Problem Definition:

Densest k-Subgraph Problem(DS-k):
Input:G(V,E), k > 0.
Output: an induced subgraph D s.t. |V (D)| = k.
Goal:Maximize |E(D)|.

Heaviest k-Subgraph Problem(HS-k):
Input:G(V,E),w : E → R+,k > 0.
Output: a induced subgraph D s.t. |V (D)| = k.
Goal:Maximize

∑
e∈E(D) w(e).
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Previous Results

NP-hard even on chordal graphs(Corneil,Perl.1984) and
planar graphs(Keil,Brecht.1991).
nδ-approximation for some δ < 1/3
(Feige,Kortsarz,Peleg.2001).
n/k-approximation(Srivastav,Wolf.1998;Goemans,1999).
No PTAS in general(Khot.2004).
PTAS for dense graph(Arora, Karger, Karpinski.1995).
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Previous Results

Some better approximation for special k.
HS-k is in P on trees(Maffioli.1991),
co-graphs(Corneil,Perl.1984) and chordal graph if its clique
graph is a path(Liazi,Milis,Zissimopoulos.2004).
PTAS on chordal graph if its clique graph is a
star(Liazi,Milis,Pascual,Zissimopoulos.2006).
OPEN: complexity on interval graphs(even for proper
interval graphs).
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Our Results

Proper interval graphs(unknown): PTAS.
Chordal graphs(NP-hard): Constant approximation.
Planar graphs(NP-hard): PTAS.
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Proper Interval Graphs-A simple 3-approximation

Densest disjoint clique k-subgraph(DDCS-k) problem:
Find a (not necessarily induced) subgraph G′(V ′, E′) such that

|V ′| = k;
G′ is composed with several vertex disjoint cliques;
|E′| is maximized.
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Proper Interval Graphs-A simple 3-approximation

DDCS-k can be solved by Dynamic Programming: Let DS(i, l)
be the optimal solution of DDCS-l problem on G(V1...i).

DS(i, l) = max
(j,x)∈A

{DS(j, x) +
(

l − x

2

)
}

where A is the feasible integer solution set of the following
constraints system:
1 ≤ j < i, 0 ≤ x ≤ l, l − x ≤ i− j, l − x ≤ i− qG(i) + 1.
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Proper Interval Graphs-A simple 3-approximation

An optimal DDCS-k solution is a 3-approximation of DS-k
problem.
We construct a DDCS-k solution OPTDDCS from an optimal
solution OPTDS of the DS-k problem such that
|OPTDDCS | ≥ 1/3 · |OPTDS|.
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Proper Interval Graphs-A simple 3-approximation

Construction(Greedy):
Repeatedly remove the vertices and all adjacent edges of
a maximum clique from OPTDS .
Take OPTDDCS as the union of these maximum cliques.
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Proper Interval Graphs-A simple 3-approximation
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Proper Interval Graphs-PTAS

Def: overlap number κG(v) as the number of maximal cliques
in G containing v.

The h-overlap clique subgraph H is a subgraph of G such that
κH(v) ≤ h for all v ∈ V (H).

For example, a disjoint clique subgraph is a 1-overlap clique
subgraph.
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Proper Interval Graphs-PTAS

densest h-overlap clique k-subgraph(DOCS-(h, k)) problem:
Find a (not necessarily induced) subgraph G′(V ′, E′) such that

|V ′| = k;
G′ is a h-overlap clique subgraph of G;
|E′| is maximized.

DOCS-(h, k) can be also solved by dynamic problem if h is a
constant.
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Proper Interval Graphs-PTAS

Similarly, we construct a DOCS-(h, k) solution OPTDOCS from
an optimal solution OPTDS of the DS-k problem such that
|OPTDOCS | ≥ (1− 4

h/2−1) · |OPTDS |.

So, in order to get a 1− ε approximation, it is enough to set
h = 2 + 8/ε.
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Proper Interval Graphs-PTAS
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Chordal Graph

A graph is chordal if it does not contain an induced cycle of
length k for k ≥ 4.

A perfect elimination order of a graph is an ordering of the
vertices such that Pred(v) forms a clique for every vertex v,
where Pred(v) is the set of vertices adjacent to v and
preceding v in the order.

Thm: A graph is chordal if and only if it has a perfect
elimination order.
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Chordal Graph

Maximum Density Subgraph Problem(MDSP)

Input G(V,E), vertex weight w : v → R+,
Output: an induced subgraph G′(V ′, E′).

Goal: maximize the density (
∑

v∈V ′ w(v)+|E′|)
|V ′| .

This problem can be solved optimally in polynomial time by
reducing to a parametric flow problem
[Gallo,Grigoriadis,Tarjan.1989].
Important Fact: w(v) + dG′(v) ≥ ρ.
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Chordal Graph

The high level idea :
We run the above MSDP algorithm on our given graph with
w(v) = 0 for all v ∈ V

we get a subgraph G′ of size k, we have exactly an optimal
solution for the DS-k problem.
If we get a smaller subgraph, we repeat the MSDP
algorithm in the remaining graph and add the solution in.
If we we get a larger subgraph, we need to pick some
vertices in this subgraph to satisfy the cardinality constraint
without losing much density.
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Chordal Graph

Densest-k-Subgraph-Chordal(G(V,E))
1: V0 = ∅; i = 0;
2: i = i + 1;run MSDP in the remaining graph

G(V − Vi−1, E(V − Vi−1), wi(v) = d(v, Vi−1). let the optimal
subgraph(subset of vertices) be V ′

i and the density be ρi.
3: if |Vi−1|+ |V ′

i | < k/2 then
4: Vi = Vi−1 ∪ V ′

i and go back to step 2.
5: else if k/2 ≤ |Vi−1|+ |V ′

i | ≤ k then
6: Vi = Vi−1 ∪ V ′.
7: else if |Vi−1|+ |V ′

i | > k then
8: V ′′ = Pick(V ′

i , wi) and Vi = Vi−1 ∪ V ′′;
9: end if

10: Arbitrary take k − |Vi| remaining vertices into Vi.
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Chordal Graph
Pick(V ′

t ,w)
1: Compute a perfect elimination order for V ′, say
{v1, v2, . . . , vm},m > k/2. V ′′ = ∅.

2: for i=m to 1 do
3: if |PredV ′

t
(vi)| ≥ ρt/2 then

4: if |V ′′|+ |PredV ′
t
(vi)|+ 1 ≤ k/4 then

5: V ′′ = V ′′ ∪ {vi} ∪ PredV ′
t
(vi) .

6: else if k/4 < |V ′′|+ |PredV ′
t
(vi)|+ 1 ≤ k/2 then

7: V ′′ = V ′′ ∪ {vi} ∪ PredV ′
t
(vi); return V ′′.

8: else if |V ′′|+ |PredV ′
t
(vi)|+ 1 > k/2 then

9: Add into V ′′ vi and arbitrary its k/2− |V ′′| − 1
predecessors; return V ′′.

10: end if
11: else if w(vi) + |SuccV ′

t
(vi)| > ρt/2 then

12: V ′′ = V ′′ ∪ {vi}; If |V ′′| > k/4 return V ′′;
13: end if
14: end for
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Chordal Graph

Suppose OPT = G∗(V ∗, E∗).

If |E(SOL ∩ V ∗)| ≥ |E∗|/2, then the algorithm is a
1/2-approximation.

If not.....
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Chordal Graph

Analysis Sketch:
Let Ii = Vi ∩ V ∗ and Ri = V ∗ \ Ii. Since we get the the optimal
solution V ′

i on MDSP instance
G(V − Vi−1, E(V − Vi−1), wi(v) = d(v, Vi−1) at step i, we have

ρi = |E(V ′
i )|+d(Vi−1,V ′

i )
|V ′

i |
≥ |E(Ri−1)|+d(Vi−1,Ri−1)

|Ri−1| ≥ |E(Ri−1)|+d(Ii−1,Ri−1)
|Ri−1|

≥ |E(Ri−1)|+d(Ii−1,Ri−1)
k = |E∗|−|E(Ii−1)|

k ≥ |E∗|−|E(It)|
k ≥ |E∗|

2k = ρ∗

2 .

for all i ≤ t.
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Chordal Graph

we can prove ρi ≥ ρi+1 for all i.
We can also prove if ρi > k/4 then i = 1.
If ρt > k/4, and recall dV1(v1) ≥ ρ1 > k/4, So, a clique of size at
least k/4, a 16-approximation.
If not,...
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Chordal Graph

In Pick:
we can see
w(v) + dV ′′(v) = w(v) + |PredV ′′(v)|+ |SuccV ′′(v)| ≥ ρt/2.

So

ρ′t = E(V ′′)+d(V ′′,Vi−1)
|V ′′| = 1/2

∑
v∈V ′′ dV ′′ (v)+

∑
v∈V ′′ d(v,Vi−1)

|V ′′|

≥
∑

v∈V ′′ dV ′′ (v)+
∑

v∈V ′′ wi(v)

2|V ′′| ≥ ρt

4 .
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Planar Graph

Sketch:
Decompose the planar graph into a series of
K-outerplanar graphs.
Solve the problem in each outerplanar graph.
Recombine the solution.

Standard Baker’s technique, but some more details...omit here.
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Thank You!

thanks to Jian XIA and Yan ZHANG for discussions on
proper interval graphs.
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