Densest/Heaviest k-subgraph on Interval Graphs, Chordal Graphs and Planar Graphs

Presented by Jian Li, Fudan University

Mar 2007, HKUST

May 8, 2006

Problem Definition:

Densest k-Subgraph Problem(DS- k):

- Input: $G(V, E), k>0$.
- Output: an induced subgraph D s.t. $|V(D)|=k$.
- Goal:Maximize $|E(D)|$.

Heaviest k-Subgraph Problem(HS-k):

- Input: $G(V, E), w: E \rightarrow R^{+}, k>0$.
- Output: a induced subgraph D s.t. $|V(D)|=k$.
- Goal:Maximize $\sum_{e \in E(D)} w(e)$.

Previous Results

- NP-hard even on chordal graphs(Corneil,Perl.1984) and planar graphs(Keil,Brecht.1991).
- n^{δ}-approximation for some $\delta<1 / 3$ (Feige,Kortsarz,Peleg.2001).
- n / k-approximation(Srivastav,Wolf.1998;Goemans,1999).
- No PTAS in general(Khot.2004).
- PTAS for dense graph(Arora, Karger, Karpinski.1995).

Previous Results

- Some better approximation for special k.
- HS-k is in \mathbf{P} on trees(Maffioli.1991), co-graphs(Corneil,Perl.1984) and chordal graph if its clique graph is a path(Liazi,Milis,Zissimopoulos.2004).
- PTAS on chordal graph if its clique graph is a star(Liazi,Milis,Pascual,Zissimopoulos.2006).
- OPEN: complexity on interval graphs(even for proper interval graphs).

Our Results

- Proper interval graphs(unknown): PTAS.
- Chordal graphs(NP-hard): Constant approximation.
- Planar graphs(NP-hard): PTAS.

Proper Interval Graphs-A simple 3-approximation

Densest disjoint clique k-subgraph(DDCS- k) problem:
Find a (not necessarily induced) subgraph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ such that

- $\left|V^{\prime}\right|=k$;
- G^{\prime} is composed with several vertex disjoint cliques;
- $\left|E^{\prime}\right|$ is maximized.

Proper Interval Graphs-A simple 3-approximation

DDCS- k can be solved by Dynamic Programming: Let $D S(i, l)$ be the optimal solution of DDCS-l problem on $G\left(V_{1 \ldots i}\right)$.

$$
D S(i, l)=\max _{(j, x) \in \mathcal{A}}\left\{D S(j, x)+\binom{l-x}{2}\right\}
$$

where \mathcal{A} is the feasible integer solution set of the following constraints system:
$1 \leq j<i, 0 \leq x \leq l, l-x \leq i-j, l-x \leq i-q_{G}(i)+1$.

Proper Interval Graphs-A simple 3-approximation

An optimal DDCS- k solution is a 3-approximation of DS- k problem.
We construct a DDCS- k solution $O P T_{D D C S}$ from an optimal solution $O P T_{D S}$ of the DS- k problem such that $\left|O P T_{D D C S}\right| \geq 1 / 3 \cdot\left|O P T_{D} S\right|$.

Proper Interval Graphs-A simple 3-approximation

Construction(Greedy):

- Repeatedly remove the vertices and all adjacent edges of a maximum clique from $O P T_{D S}$.
- Take $O P T_{D D C S}$ as the union of these maximum cliques.

Proper Interval Graphs-A simple 3-approximation

Proper Interval Graphs-PTAS

Def: overlap number $\kappa_{G}(v)$ as the number of maximal cliques in G containing v.

The h-overlap clique subgraph H is a subgraph of G such that $\kappa_{H}(v) \leq h$ for all $v \in V(H)$.

For example, a disjoint clique subgraph is a 1-overlap clique subgraph.

Proper Interval Graphs-PTAS

densest h-overlap clique k-subgraph(DOCS- (h, k)) problem: Find a (not necessarily induced) subgraph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$ such that

- $\left|V^{\prime}\right|=k$;
- G^{\prime} is a h-overlap clique subgraph of G;
- $\left|E^{\prime}\right|$ is maximized.

DOCS-(h, k) can be also solved by dynamic problem if h is a constant.

Proper Interval Graphs-PTAS

Similarly, we construct a DOCS- (h, k) solution $O P T_{D O C S}$ from an optimal solution $O P T_{D S}$ of the DS- k problem such that $\left|O P T_{D O C S}\right| \geq\left(1-\frac{4}{h / 2-1}\right) \cdot\left|O P T_{D S}\right|$.
So, in order to get a $1-\epsilon$ approximation, it is enough to set $h=2+8 / \epsilon$.

Proper Interval Graphs-PTAS

(a)

(b)

Chordal Graph

A graph is chordal if it does not contain an induced cycle of length k for $k \geq 4$.

A perfect elimination order of a graph is an ordering of the vertices such that $\operatorname{Pred}(v)$ forms a clique for every vertex v, where $\operatorname{Pred}(v)$ is the set of vertices adjacent to v and preceding v in the order.

Thm: A graph is chordal if and only if it has a perfect elimination order.

Chordal Graph

Maximum Density Subgraph Problem(MDSP)

- Input $G(V, E)$, vertex weight $w: v \rightarrow \mathbb{R}^{+}$,
- Output: an induced subgraph $G^{\prime}\left(V^{\prime}, E^{\prime}\right)$.
- Goal: maximize the density $\frac{\left(\sum_{v \in V^{\prime}} w(v)+\left|E^{\prime}\right|\right)}{\left|V^{\prime}\right|}$.

This problem can be solved optimally in polynomial time by reducing to a parametric flow problem
[Gallo,Grigoriadis,Tarjan.1989].
Important Fact: $w(v)+d_{G^{\prime}}(v) \geq \rho$.

Chordal Graph

The high level idea :
We run the above MSDP algorithm on our given graph with
$w(v)=0$ for all $v \in V$

- we get a subgraph G^{\prime} of size k, we have exactly an optimal solution for the DS- k problem.
- If we get a smaller subgraph, we repeat the MSDP algorithm in the remaining graph and add the solution in.
- If we we get a larger subgraph, we need to pick some vertices in this subgraph to satisfy the cardinality constraint without losing much density.

Chordal Graph

Densest-k-Subgraph-Chordal(G(V,E))

1: $V_{0}=\emptyset ; i=0$;
2: $i=i+1$;run MSDP in the remaining graph
$G\left(V-V_{i-1}, E\left(V-V_{i-1}\right), w_{i}(v)=d\left(v, V_{i-1}\right)\right.$. let the optimal subgraph(subset of vertices) be V_{i}^{\prime} and the density be ρ_{i}.
3: if $\left|V_{i-1}\right|+\left|V_{i}^{\prime}\right|<k / 2$ then
4: $\quad V_{i}=V_{i-1} \cup V_{i}^{\prime}$ and go back to step 2.
5: else if $k / 2 \leq\left|V_{i-1}\right|+\left|V_{i}^{\prime}\right| \leq k$ then
6: $\quad V_{i}=V_{i-1} \cup V^{\prime}$.
7: else if $\left|V_{i-1}\right|+\left|V_{i}^{\prime}\right|>k$ then
8: $\quad V^{\prime \prime}=\operatorname{Pick}\left(V_{i}^{\prime}, w_{i}\right)$ and $V_{i}=V_{i-1} \cup V^{\prime \prime}$;
9: end if
10: Arbitrary take $k-\left|V_{i}\right|$ remaining vertices into V_{i}.

Chordal Graph

Pick($\left.V_{t}^{\prime}, \mathbf{w}\right)$

1: Compute a perfect elimination order for V^{\prime}, say $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}, m>k / 2 . V^{\prime \prime}=\emptyset$.
2: for $\mathrm{i}=\mathrm{m}$ to 1 do
3: if $\left|\operatorname{Pred}_{V_{t}^{\prime}}\left(v_{i}\right)\right| \geq \rho_{t} / 2$ then
4: \quad if $\left|V^{\prime \prime}\right|+\left|\operatorname{Pred}_{V_{t}^{\prime}}\left(v_{i}\right)\right|+1 \leq k / 4$ then
5: $\quad V^{\prime \prime}=V^{\prime \prime} \cup\left\{v_{i}\right\} \cup \operatorname{Pred}_{V_{t}^{\prime}}\left(v_{i}\right)$.
6: \quad else if $k / 4<\left|V^{\prime \prime}\right|+\left|\operatorname{Pred}_{V_{t}^{\prime}}\left(v_{i}\right)\right|+1 \leq k / 2$ then
7: $\quad V^{\prime \prime}=V^{\prime \prime} \cup\left\{v_{i}\right\} \cup \operatorname{Pred}_{V_{t}^{\prime}}\left(v_{i}\right)$; return $V^{\prime \prime}$.
8: \quad else if $\left|V^{\prime \prime}\right|+\left|\operatorname{Pred}_{V_{t}^{\prime}}\left(v_{i}\right)\right|+1>k / 2$ then
9: \quad Add into $V^{\prime \prime} v_{i}$ and arbitrary its $k / 2-\left|V^{\prime \prime}\right|-1$ predecessors; return $V^{\prime \prime}$.
10: end if
11: \quad else if $w\left(v_{i}\right)+\left|\operatorname{Succ}_{V_{t}^{\prime}}\left(v_{i}\right)\right|>\rho_{t} / 2$ then
12: $\quad V^{\prime \prime}=V^{\prime \prime} \cup\left\{v_{i}\right\}$; If $\left|V^{\prime \prime}\right|>k / 4$ return $V^{\prime \prime}$;
13: end if
14: end for

Chordal Graph

Suppose $O P T=G^{*}\left(V^{*}, E^{*}\right)$.
If $\left|E\left(S O L \cap V^{*}\right)\right| \geq\left|E^{*}\right| / 2$, then the algorithm is a 1/2-approximation.

If not.....

Chordal Graph

Analysis Sketch:

Let $I_{i}=V_{i} \cap V^{*}$ and $R_{i}=V^{*} \backslash I_{i}$. Since we get the the optimal solution V_{i}^{\prime} on MDSP instance
$G\left(V-V_{i-1}, E\left(V-V_{i-1}\right), w_{i}(v)=d\left(v, V_{i-1}\right)\right.$ at step i, we have

$$
\begin{aligned}
\rho_{i} & =\frac{\left|E\left(V_{i}^{\prime}\right)\right|+d\left(V_{i-1}, V_{i}^{\prime}\right)}{\left|V^{\prime}\right|} \geq \frac{\left|E\left(R_{i-1}\right)\right|+d\left(V_{i-1}, R_{i-1}\right)}{\left|V_{i-1}\right|} \geq \frac{\left|E\left(R_{i-1}\right)\right|+d\left(I_{i-1}, R_{i-1}\right)}{\left|R_{i-1}\right|} \\
& \geq \frac{\left|E\left(R_{i-1}\right)\right|+d\left(I_{i-1}, R_{i-1}\right)}{k}=\frac{\left|E^{*}\right|-\left|E\left(I_{i-1}\right)\right|}{k} \geq \frac{\left|E^{*}\right|-\left|E\left(I_{t}\right)\right|}{k} \geq \frac{\left|E^{*}\right|}{2 k}=\frac{\rho^{*}}{2} .
\end{aligned}
$$

for all $i \leq t$.

Chordal Graph

we can prove $\rho_{i} \geq \rho_{i+1}$ for all i.
We can also prove if $\rho_{i}>k / 4$ then $i=1$.
If $\rho_{t}>k / 4$, and recall $d_{V_{1}}\left(v_{1}\right) \geq \rho_{1}>k / 4$, So, a clique of size at least $k / 4$, a 16-approximation.
If not,...

Chordal Graph

In Pick:

we can see
$w(v)+d_{V^{\prime \prime}}(v)=w(v)+\left|\operatorname{Pred}_{V^{\prime \prime}}(v)\right|+\left|S u c c_{V^{\prime \prime}}(v)\right| \geq \rho_{t} / 2$.
So

$$
\begin{aligned}
\rho_{t}^{\prime} & =\frac{E\left(V^{\prime \prime}\right)+d\left(V^{\prime \prime}, V_{i-1}\right)}{\left|V^{\prime \prime}\right|}=\frac{1 / 2 \sum_{v \in V^{\prime \prime}} d_{V^{\prime \prime}}(v)+\sum_{v \in V^{\prime \prime}} d\left(v, V_{i-1}\right)}{\left|V^{\prime \prime}\right|} \\
& \geq \frac{\sum_{v \in V^{\prime \prime}} d_{V^{\prime \prime}}(v)+\sum_{v \in V^{\prime \prime}} w_{i}(v)}{2\left|V^{\prime \prime}\right|} \geq \frac{\rho_{t}}{4} .
\end{aligned}
$$

Planar Graph

Sketch:

- Decompose the planar graph into a series of K-outerplanar graphs.
- Solve the problem in each outerplanar graph.
- Recombine the solution.

Standard Baker's technique, but some more details...omit here.

Thank You!

- thanks to Jian XIA and Yan ZHANG for discussions on proper interval graphs.

