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Motivation

 Emergence of large-scale distributed query processing

 Scientific federations like SkyServer, GridDB

 Publish-subscribe systems and content delivery 

networks

 Distributed data streams and web sources

 Sensor networks

 Large scale data analytics (MapReduce, Hadoop)



 Need to support:

 Very large datasets and/or

 Large numbers of users and queries

 Minimization of communication cost often a key problem

 Network utilization in Internet-scale systems

 Energy consumed in sensor networks

Challenges:

 How to choose query plan

 How to ship data across the network to implement these plans

Motivation
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 [Silberstein and Yang, 2007] Many-to-many Aggregation

Example: Sensor Network Aggregates 
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Problem Formulation

 Input:

 Communication Network G(V,E)
 Edge weights indicate the communication costs

 Data sources: S1, …, Sn

 A set of queries: Q1, Q2, …..

 For each query Q, a query plan (tree) is given
 No join order optimization

 Goal:

 Minimize the communication cost of executing the 
queries



Our Results

Single Query

 Polynomial time solvable (by standard dynamic 
programming)

Multiple Queries

 NP-Hard on general communication networks

 Polynomial time solvable on tree communication networks

 O(logn)-approximation for general communication 
networks

 O(1)-approximation for some special cases



Outline

 Motivation & Problem Formulation

 Summary of Our Results

 Multiple Queries

 NP-Hardness

 Polynomial time algorithm for tree communication 
networks

 Approximation algorithms

 Experiments 

 Future Work



Complexity
 NP-Hard for general communication networks

 Reduction from minimum Steiner tree problem
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1. Combine all the query plans into a single hypergraph

 That explicitly captures the data movement sharing 

opportunities

2. For each edge, decide which data are communicated along 

that edge

 By solving a hypergraph min-cut problem

3. Combine the local solutions into a single global solution

High-level Overview of  Our Approach



Steps 1 and 2: Single Query
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Step 3: Single Query
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Key Question:

Are these movements consistent

with each other ?

Answer:

Yes, given unique min-cut solutions.



Multiple Queries
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Multiple Queries
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(e.g. Data item S2 above)



Multiple Queries

 Add hyperedges corresponding to shared data 

sources

 For each edge, solve a hypergraph partition problem, 

(which can be solved by min-cut algorithm)

 Again we can prove the consistency of these local 

movements

 Complexity: m max-flow min-cut computations 

where m is #edges in the tree
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O(logn)-approximation for General 

Networks

1. Construct a distribution of trees base on the communication network

by using metric embedding [Fakcharoenphol/Rao/Talwar 06]

2. Randomly pick a tree and solve the problem on the tree optimally

3. Map the solution back to the original network

w.p 0.5

w.p 0.3

w.p 0.2

[FRT 06] Any 

metric can be 

embedded into a 

distribution of tree 

metrics with an 

O(log n)-distortion.



 „„Pairs Problem‟‟: Each query has only two data sources. 

The size of the result is zero.

O(1)-approximations for some special cases
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 „„Pairs Problem‟‟: Each query has only two data 
sources. The size of the result is zero.

 We can capture the queries by a graph H
 H is a tree : 2p

 H is planar : 6p

 Deg(H)<= D : D
Where p is the approixmation ratio for minimum Steiner tree problem

O(1)-approximations for some special cases

X1 
(1)

F(X1, X2)

(1)
X2 

(0)

X1 
(1)

F(X1, X3)

(1)
X3 

(0)

X1 
(1)

F(X1, X4)

(1)
X4 

(0)

X2 
(1)

F(X2, X3)

(1)
X3 

(0)

X1

X2

X3

X4

H



Outline

 Motivation & Problem Formulation

 Our Results

 Multiple Queries

 NP-hardness

 On trees, Polynomial time Algorithm

 Approximations

 Experiments 

 Future work



Experiments

 IND-DP: optimize each query separately

 HYPR: the hypergraph min-cut approach

Datasets1: the sizes of sources are identical.

Datesets2: the sizes of sources are randomly chosen from a skewed distribution. 

Workload: Each query is over a randomly chosen subset of sources.

LOCAL: all queries are chosen to be geometrically co-located sources

Communication network: a spanning tree over a set of point randomly 

distributed in a 2-d plane



Future Directions

 Constant approximations for general 

communication networks

 Sharing intermediate results generated during 

query execution

 Online algorithms for handling new queries

Amol Deshpande
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