Minimizing Communication Cost in Distributed Multi-query Processing

Jian Li

University of Maryland, College Park
(joint work with Amol Deshpande and Samir Khuller)

Outline

- Motivation \& Problem Formulation
- Summary of Our Results
- Multiple Queries
- NP-Hardness
- Polynomial time algorithm for tree communication networks
- Approximation algorithms
- Experiments
- Future Work

Motivation

- Emergence of large-scale distributed query processing
- Scientific federations like SkyServer, GridDB
- Publish-subscribe systems and content delivery networks
- Distributed data streams and web sources
- Sensor networks
- Large scale data analytics (MapReduce, Hadoop)

Motivation

- Need to support:
- Very large datasets and/or
- Large numbers of users and queries
- Minimization of communication cost often a key problem
- Network utilization in Internet-scale systems
- Energy consumed in sensor networks

Challenges:

- How to choose query plan
- How to ship data across the network to implement these plans

Example: Distributed Databases

Communication Network

Query 2

Example: Distributed Databases

Communication Network

Query 2

Example: Distributed Databases

Cost=

$$
8^{*}(1+1+1)
$$

Communication Network

Query 2

Example: Distributed Databases

Query 2

Example: Sensor Network Aggregates

- [Silberstein and Yang, 2007] Many-to-many Aggregation

Q1 (issued by X_{7}): $2 x_{1}+3 X_{2}+X_{4}$
Q2 (issued by \boldsymbol{X}_{8}): $X_{1}+X_{2}+X_{3}+X_{4}$
Q3 (issued by X_{6}): $2 X_{2}+3 X_{3}+X_{5}$

Problem Formulation

- Input:
- Communication Network G(V,E)
- Edge weights indicate the communication costs
- Data sources: S_{1}, \ldots, S_{n}
- A set of queries: $Q_{1}, Q_{2}, \ldots .$.
- For each query Q, a query plan (tree) is given
- No join order optimization
- Goal:
- Minimize the communication cost of executing the queries

Our Results

Single Query

Polynomial time solvable (by standard dynamic programming)

Multiple Queries

NP-Hard on general communication networks

- Polynomial time solvable on tree communication networks
- O(logn)-approximation for general communication networks
- $\mathrm{O}(1)$-approximation for some special cases

Outline

- Motivation \& Problem Formulation
- Summary of Our Results
- Multiple Queries
- NP-Hardness
- Polynomial time algorithm for tree communication networks
- Approximation algorithms
- Experiments
- Future Work

Complexity

- NP-Hard for general communication networks
- Reduction from minimum Steiner tree problem

Queries:

Complexity

- NP-Hard for general communication networks

Queries:

Optimal solution: Minimum-weight (Steiner) tree connecting $X 1, X 2, X 7, X 8$

Outline

- Motivation \& Problem Formulation
- Summary of Our Results
- Multiple Queries
- NP-hardness
- Polynomial time algorithm for tree communication networks
- Approximation algorithms
- Experiments
- Future Work

High-level Overview of Our Approach

1. Combine all the query plans into a single hypergraph

- That explicitly captures the data movement sharing opportunities

2. For each edge, decide which data are communicated along that edge

- By solving a hypergraph min-cut problem

3. Combine the local solutions into a single global solution

Steps 1 and 2: Single Query

Communication Network

Query 1

Solving for edge (B, C)

1. Label the nodes as B or C if possible, ? Otherwise
2. Solve a partition problem to resolve ?'s
3. "Cut" edges indicate the data movement
Solution
S2 moves across edge (B, C)

Steps 1 and 2: Single Query

Communication Network

Query 1

Solving for edge (C, D)

Solution
S1S2 moves from C to D S1S2S4 moves from D to C

Step 3: Single Query

Communication Network

Query 1

Solution for (B, C) S2 moves from B to C
Solution for (C, D)
S1S2 moves from C to D
S1S2S4 moves from D to C
Solution for (A, C)

Key Question:
Are these movements consistent with each other?

Answer:
Yes, given unique min-cut solutions.

Multiple Queries

Ship to C

Multiple Queries

We create hyperedges

Multiple Queries

We create hyperedges

> Ship to C

Multiple Queries

Solve for edge (C,D)

Multiple Queries

Solution for edge (C,D) : Hypergraph Partition

Why hyperedges?
So we don't count data movements multiple times
(e.g. Data item S2 above)

Multiple Queries

- Add hyperedges corresponding to shared data sources
- For each edge, solve a hypergraph partition problem, (which can be solved by min-cut algorithm)
- Again we can prove the consistency of these local movements
- Complexity: m max-flow min-cut computations where m is \#edges in the tree

Outline

- Motivation \& Problem Formulation
- Summary of Our Results
- Multiple Queries
- NP-Hardness
- Polynomial time algorithm for tree communication networks
- Approximation algorithms
- Experiments
- Future Work

O(logn)-approximation for General Networks

1. Construct a distribution of trees base on the communication network by using metric embedding [Fakcharoenphol/Rao/Talwar 06]
2. Randomly pick a tree and solve the problem on the tree optimally
3. Map the solution back to the original network

[FRT 06] Any metric can be embedded into a distribution of tree metrics with an
O($\log \mathrm{n})$-distortion.

$\mathrm{O}(1)$-approximations for some special cases

- "Pairs Problem": Each query has only two data sources. The size of the result is zero.

$\mathrm{O}(1)$-approximations for some special cases
- "Pairs Problem": Each query has only two data sources. The size of the result is zero.

- We can capture the queries by a graph H
- His a tree: 2p
- H is planar: $6 p$
- $\operatorname{Deg}(H)<=D: D$

Where p is the approixmation ratio for minimum Steiner tree problem

Outline

- Motivation \& Problem Formulation
- Our Results
- Multiple Queries
- NP-hardness
- On trees, Polynomial time Algorithm
- Approximations
- Experiments
- Future work

Experiments

- IND-DP: optimize each query separately
- HYPR: the hypergraph min-cut approach

(ii) Varying No. of Queries - Dataset 2

(iii) Varying No. of Nodes - Dataset 2

(iv) Varying Max Query-Size - Dataset 2

Communication network: a spanning tree over a set of point randomly distributed in a 2-d plane
Datasets1: the sizes of sources are identical.
Datesets2: the sizes of sources are randomly chosen from a skewed distribution.
Workload: Each query is over a randomly chosen subset of sources.
LOCAL: all queries are chosen to be geometrically co-located sources

Future Directions

- Constant approximations for general communication networks
- Sharing intermediate results generated during query execution
- Online algorithms for handling new queries

Thanks

