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Motivation

Emergence of large-scale distributed query processing
o Scientific federations like SkyServer, GridDB

o Publish-subscribe systems and content delivery
networks

o Distributed data streams and web sources
o Sensor networks

o Large scale data analytics (MapReduce, Hadoop)



Motivation

Need to support:
o Very large datasets and/or
o Large numbers of users and queries

Minimization of communication cost often a key problem
o Network utilization in Internet-scale systems

o Energy consumed in sensor networks

Challenges:
o How to choose query plan
o How to ship data across the network to implement these plans
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Example: Sensor Network Agoregates

e [Silberstein and Yang, 2007] Many-to-many Aggregation

Q1 (issued by X,): 2 X; + 3 X, + X,
Q2 (issued by X)X+X +X +X
Q3 (issued by X)2X +3X +X



Problem Formulation

Input:
o Communication Network G(V,E)
Edge weights indicate the communication costs

o Data sources: S, ..., S,

o A set of queries: Q,, Q,, .....

o For each query Q, a query plan (tree) is given
No join order optimization

Goal:

o Minimize the communication cost of executing the
gueries



Our Results

Single Query
Polynomial time solvable (by standard dynamic
programming)

Multiple Queries
NP-Hard on general communication networks
Polynomial time solvable on tree communication networks

O(logn)-approximation for general communication
networks

O(1)-approximation for some special cases
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Complexity

= NP-Hard for general communication networks

= Reduction from minimum Sg(einer tree problem
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Complexity

= NP-Hard for general communication networks

Queries:
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Optimal solution: Minimum-weight (Steiner)
tree connecting X1, X2, X7, X8
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High-level Overview ot Our Approach

1. Combine all the query plans into a single hypergraph

That explicitly captures the data movement sharing
opportunities

2. For each edge, decide which data are communicated along
that edge

By solving a hypergraph min-cut problem

3. Combine the local solutions into a single global solution



‘ Steps 1 and 2: Single Query
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data movement
Solution

S2 moves across edge (B, C)




‘ Steps 1 and 2: Single Query
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Step 3: Single Query

Data: S1 (10) Data: S5 (8) Shipto C
A E (5)81 MZ D@4
Data: SS> C ——D éa S4 (100) (7)31 MZ 100)
S4
B F
Data: S2 (10) Data: S6 (100) 10) o1 o, (10
Communication Network Query 1
Solution for (B, C) Key Question:
S2 moves from B to C Are these movements consistent
Solution for (C, D) with each other ?

S1S2 moves from C to D

S1S2S4 moves fromDto C Answer:
Solution for (A, C) Yes, given unique min-cut solutions.



‘ Multiple Quertes
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‘ Multiple Quertes

We create hyperedges
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‘ Multiple Quertes

We create hyperedges

Shipto C




‘ Multiple Quertes

Solve for edge (C,D)




‘ Multiple Quertes

Solution for edge (C,D) : Hypergraph Partition

Why hyperedges ?
So we don’t count data movements multiple times
(e.g. Data item S2 above)



Multiple Queries

Add hyperedges corresponding to shared data
sources

For each edge, solve a hypergraph partition problem,
(which can be solved by min-cut algorithm)

Again we can prove the consistency of these local
movements

Complexity: m max-flow min-cut computations
where m is #edges in the tree
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O(logn)-approximation for General
Networks

Construct a distribution of trees base on the communication network

by using metric embedding [Fakcharoenphol/Rao/Talwar 06]
Randomly pick a tree and solve the problem on the tree optimally
Map the solution back to the original network

[FRT 06] Any
metric can be
embedded into a
w.p 0.3 distribution of tree
metrics with an
O(log n)-distortion.

w.p 0.5

/N

w.p 0.2



‘ O(1)-approximations for some special cases

“Pairs Problem”: Each query has only two data sources.
The size of the result is zero.
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O(1)-approximations for some special cases

“Pairs Problem™: Each query has only two data
sources. The size of the result is zero.

(0) /\ (0) /\ (0) /\ (0) /\
F(X1, X2) F(X1, X3) F(X1, X4) F(X2, X3) iib\
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We can capture the queries by a graph H
a0 Hisatree: 2p

o His planar : 6p
o Deg(H)<=D:D
Where p is the approixmation ratio for minimum Steiner tree problem
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Experiments

IND-DP: optimize each query separately
HYPR: the hypergraph min-cut approach
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Communication network: a spanning tree over a set of point randomly
distributed in a 2-d plane

Datasetsl: the sizes of sources are identical.

Datesets2: the sizes of sources are randomly chosen from a skewed distribution.
Workload: Each query is over a randomly chosen subset of sources.

LOCAL.: all queries are chosen to be geometrically co-located sources



Future Directions

o Constant approximations for general
communication networks

o Sharing intermediate results generated during
guery execution

o Online algorithms for handling new queries

Amol Deshpande
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