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ABSTRACT
We consider the multi-shop ski rental problem. This problem
generalizes the classic ski rental problem to a multi-shop set-
ting, in which each shop has different prices for renting and
purchasing a pair of skis, and a consumer has to make de-
cisions on when and where to buy. We are interested in the
optimal online (competitive-ratio minimizing) mixed strat-
egy from the consumer’s perspective. For our problem in
its basic form, we obtain exciting closed-form solutions and
a linear time algorithm for computing them. We further
demonstrate the generality of our approach by investigat-
ing three extensions of our basic problem, namely ones that
consider costs incurred by entering a shop or switching to
another shop. Our solutions to these problems suggest that
the consumer must assign positive probability in exactly one
shop at any buying time. Our results apply to many real-
world applications, ranging from cost management in IaaS

cloud to scheduling in distributed computing.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Distribution functions;
F.2 [Analysis of Algorithms and Problem of Com-
plexity]: Miscellaneous

General Terms
Algorithms, Performance, Theory

Keywords
multi-shop ski rental, ski rental, optimal strategy, Nash equi-
librium, online algorithm

1. INTRODUCTION
The ski rental problem (SR) is a dilemma faced by a con-

sumer, who is uncertain about how many days she will ski
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and has to trade off between buying and renting skis: once
she buys the skis, she will enjoy the remaining days rent-
free, but before that she must pay the daily renting cost.
The literature is interested in investigating the online opti-
mal strategy of the consumer. That is, a strategy that yields
the lowest competitive ratio without having any information
of the future (as is standard in the literature, competitive
ratio is defined as the the ratio between the cost yielded by
the consumer’s strategy and the cost yielded by the opti-
mal strategy of a prophet, who foresees how many days the
trip will last and design the optimal strategy accordingly).
The ski rental problem and its variants constitute an impor-
tant part of the online algorithm design literature from both
theoretical and applied perspectives [9, 12, 16, 17, 18, 22].

In this paper, we consider the multi-shop ski rental prob-
lem(MSR), in which the consumer faces multiple shops that
offer different renting and buying prices. She must choose
one shop immediately after she arrives at the ski field and
must rent or buy the skis in that particular shop since then.
In other words, once she has chosen a shop, the only decision
variable is when to buy the skis. Beyond the basic setting,
we also propose three important extensions of MSR as below:

• MSR with switching cost (MSR-S): The consumer is al-
lowed to switch from one shop to another and each
switching costs her some constant amount of money.

• MSR with entry fee (MSR-E): Each shop requires some
entry fee and the consumer cannot switch shops.

• MSR with entry fee and switching (MSR-ES): The con-
sumer is able to switch from one shop to another, and
she pays the entry fee as long as she enters any shop1.

In all the settings above, the consumer’s objective is to
minimize the competitive ratio. In MSR and MSR-E, she has
to consider two questions at the very beginning : (1) where
should she rent or buy the skis (place), and (2) when should
she buy the skis (timing)? While MSR-S and MSR-ES allow
the consumer to switch shops and are thus more fine-grained
than the previous two, in the sense that she is able to decide
where to rent or buy the skis at any time. For example, it
is among her options to rent in shop 1 on day 1, switch to
shop 2 from day 2, and finally switch to shop 3 and then
buys the skis.

1For example, if she switches from shop 1 to shop 2, and
then switches back to shop 1, she pays the entry fee of shop
1 twice and the entry fee of shop 2 once.
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The multi-shop ski rental problem naturally extends the
ski rental problem and allows heterogeneity in consumer’s
options, a desirable feature that makes the ski rental prob-
lem a more general modeling framework for online algorithm
design. Below, we present a few real world scenarios that
can be modeled with the multi-shop ski rental problem.

1. Scheduling in distributed computing: A file is
replicated and stored in different machines in the cluster.
Some node undertaking some computing job needs data in
the file during the execution. The node can either request
the corresponding data block of the file from some selected
machine whenever it needs to, which incurs some delay, or
it can simply ask that machine to transmit the whole file
beforehand, at the sacrifice of a longer delay at the begin-
ning without any further waiting. When selecting the repli-
cating machine, the scheduling node needs to consider the
current bandwidth, read latency, etc. In this application,
each replicating machine is considered as a shop, and rent-
ing corresponds to requesting for the data block on-demand
while buying means to fetch the whole file beforehand.

2. Cost management in IaaS cloud: Multiple IaaS

cloud vendors, such as Amazon EC2 [1], ElasticHosts [4] and
Microsoft Windows Azure [6], offer different price options,
which can be classified into two commitment levels: users
pay for on-demand server instances at an hourly rate or
make a one-time, upfront payment to host each instances
for some duration (e.g., monthly or annually), during which
users either use the instances for free [4], or enjoy a discount
on renting the instance [1].

Consider an example in Table 1. Table 1 lists the pricing
options for the instances with identical configurations offered
by Amazon EC2 and ElasticHosts. Each pricing option can
be considered as a shop in the multi-shop ski rental problem,
where in the 1(3) year(s) term contract in Amazon EC2, the
entry fee is the upfront payment and the hourly price is the
renting price.

Vendor Option Upfront($) Hourly($)
On-Demand 0 0.145

Amazon 1 yr Term 161 0.09
3 yr Term 243 0.079

ElasticHosts 1 mo Term 97.60 0
1 yr Term 976.04 0

Table 1: Pricing Options of the ‘same’ instance
in Amazon EC2 (c1.medium) and ElasticHosts
(2400MHz cpu, 1792MHz memory, 350Gb storage
and no data transfer).

3. Purchase decisions: A company offering high-resolution
aerial or satellite map service chooses between Astrium [2]
and DigitalGlobe [3]. It can either subscribe imagery from
one company or exclusively occupy the service by ‘purchas-
ing’ one satellite like what Google has done [19]. Similar ap-
plications include some person purchasing a SIM card from
different telecommunication companies.

1.1 Related Work
The ski rental problem is first considered by Karlin et al.

[14], and then studied by Karlin’s seminal paper [13] which
proposes a randomized algorithm and gives a e

e−1
competi-

tive ratio. Later researchers propose a few variants, includ-
ing the Bahncard problem [9] and the TCP acknowledgment

problem [12]. A more recent work [15] analyzes the case in
which the first or the second moment of the skiing days are
known and gives an optimal online solution. However, all
the aforementioned works deal with the case where a single
consumer rents or buys the skis in one single shop. In their
problems, the consumer only needs to decide when to buy.
While in the multi-shop ski rental problem, the consumer
has to make a two-fold decision (time and place). Closest
to our work is the work by Lotker et al. [17], which consid-
ers the case where the consumer has multiple options in one
shop, i.e., the multi-slop problem and their problem can be
regarded as a special case of our problem by setting all the
buying prices sufficiently large.

Research on “multiple consumers in one single shop” have
been conducted from applied perspectives [16, 18, 22]. Lin
et al. [16] investigate a dynamical ‘right-sizing’ strategy by
turning off servers during periods of low load. Their model
and lazy capacity provisioning algorithms closely tie to the
ski rental problem. Lu et al. [18] derive the “dynamic pro-
visioning techniques” to turn on or off the servers to min-
imize the energy consumption. They dispatch the servers
so that each individual server is reduced to a standard ski
rental problem. Wei et al. [22] propose an online algorithm
to serve the time-varying demands at the minimum cost in
IaaS cloud given one price option, in which the ‘consumers’
(servers) may be related to each other.

Another line of work [7, 11] focusing on minimizing the
cost in data centers or other cloud services assumes that
the long-term workloads are stationary and thus can be pre-
dicted, and Guenter et al. [10] consider the cases of short
predictions. However, for many real-world applications, fu-
ture workloads can exhibit non-stationarity [20]. Other re-
searchers [16, 18, 21, 22] that require no priori knowledge
of the future workload minimize the cost given one option
is selected. Our paper is orthogonal to theirs since we focus
on how to select a price option.

1.2 Our Contributions
In this paper, we consider the multi-shop ski-rental prob-

lem and its extensions, in which there are multiple shops and
the consumer must make two-fold decisions (time and place)
to minimize the competitive ratio. We model each problem
using a zero-sum game played by the consumer and nature.
We simplify the strategy space of the consumer via removal
of strictly dominated strategies and derive the form of the
optimal mixed strategy of the consumer. We summarize the
key contributions as follows:

1. For each of the problems, we prove that under the op-
timal mixed strategy of the consumer, the consumer
only assigns positive buying probability to exactly one
shop at any time. As the buying time increases, she
follows the shop order in which the ratio between buy-
ing price and renting price is increasing. This order
also holds in MSR-E and MSR-ES, where entry fee is in-
volved.

2. We derive a novel, easy-to-implement linear time al-
gorithm for computing the optimal strategy of the con-
sumer, which drastically reduces the complexity of com-
puting the solution to MSR.

3. For MSR-S, we prove that under the optimal mixed
strategy, the consumer only needs to consider switch-
ing to another shop at the buying time, i.e., she will



never switch to another shop and continue renting.
Moreover, we show that MSR-S can be reduced to an
equivalent MSR problem with modified buying prices.

4. For MSR-ES, we prove that under the optimal mixed
strategy, the consumer may switch to another shop
either during the renting period or at the buying time,
but she only follows some particular order of switching.
Moreover, the number of times of switching is no more
n where n is the number of shops.

5. We characterize any action of the consumer in MSR-

ES by proving that the action can be decoupled into
a sequence of operations. We further show that each
operation can be viewed as a virtual shop in MSR-E

and in total, we create O(n2) ‘virtual’ shops of MSR-E.
Therefore, MSR-ES can be reduced to MSR-E with minor
modifications.

Due to limited space, most of the proofs are omitted and
the readers can find them in our technical report [5].

2. BASIC PROBLEM
In the multi-shop ski rental problem (also MSR), a person

goes skiing for an anbiguous time period. There are multi-
ple shops providing skies either for rental or for buying. The
person must choose one shop as soon as she arrives at the
ski field, and she can decide whether or not to buy the skis
in that particular shop at any time2. Note that she cannot
change the shop once she chooses one. The objective is to
minimize the worst-case ratio between the amount she ac-
tually pays and the money she would have paid if she knew
the duration of skiing in advance. We assume that there
are n shops in total, denoted by [n] , {1, 2, 3, · · · , n}. Each
shop j offers skis at a renting price of rj dollars per unit
time and at a buying price of bj dollars. This problem is a
natural extension of the classic ski rental problem (SR) and
it is exactly SR when n = 1.

In MSR, it is clear that if there is a shop of which the rental
and buying prices are both larger than those of another shop,
it is always suboptimal to choose this shop. We assume that

0 < r1 < r2 < · · · < rn

b1 > b2 > · · · > bn > 0

We apply a game-theoretic approach for solving our prob-
lem. For the case of expressing the formulation, we assume
that how long the consumer skis is determined by a player
called nature. Therefore, there are two parties in the prob-
lem, and we focus on the optimal strategy of the consumer.

In the remainder of this section, we first formulate our
problem as a zero-sum game, and simplify the strategy space
in Lemma 1. Then, we combine Lemma 2-5, and fully char-
acterize the optimal strategy of the consumer in Theorem 1.
We show that optimally the consumer assigns positive buy-
ing probability to exactly one shop at any time. Moreover,
the possible times the consumer buys the skis in a shop con-
stitute a continuous interval. Thus, we can partition the
optimal strategy of the consumer into different sub-intervals
which relate to different shops, and the problem is reduced
to how to find the optimal breakpoints. Based on Lemma 7
and 8, we develop a linear time algorithm for computing the
optimal breakpoints and prove its correctness in Theorem 2.

2 In this paper, we focus on the continuous time model.

2.1 Formulation
We first analyze the action set for both players in the

game. For the consumer, we denote by j the index of the
shop in which she rents or buys the skis. Let x be the time
when she chooses to buy the skis, i.e., the consumer will rent
the skis before x and buy at x if nature has not yet stopped
her. The action of the consumer is thus represented by a
pair (j, x). Denote by Ψc the action set of the consumer:

Ψc , {(j, x) : j ∈ [n], x ∈ [0,+∞) ∪ {+∞}}

where x = +∞ means that the consumer always rents and
never buys. Next, let y denote the time when nature stops
the consumer from skiing. Thus, the action set of nature is

Ψn , {y : y ∈ (0,+∞) ∪ {+∞}}

where y = +∞ means that nature always allows the con-
sumer to keep skiing. If y = x, we regard it as the case that
right after the consumer buys the skis, nature stops her.
Given the strategy profile 〈(j, x), y〉, let cj(x, y) ≥ 0 denote
the cost paid by the consumer:

cj(x, y) ,

{
rjy, y < x

rjx+ bj , y ≥ x

Now we define the strategy space for the consumer and na-
ture. Let p , (p1, · · · , pn) be a mixed strategy represented
by a vector of probability density functions. pj(x) is the
density assigned to the strategy (j, x) for any j = 1, · · · , n
and x ∈ [0,+∞) ∪ {+∞}. In this paper, we assume that
for each point, either probability density function exists or
it is probability mass.3 If pj(x) is probability mass, we re-

gard pj(x) as +∞ and define pj,x ,
∫ x
x− pj(t)dt satisfying

pj,x ∈ (0, 1]. The strategy space P of the consumer is as
follows: 4

P =

{
p :

n∑
j=1

∫ ∞
0

pj(x)dx = 1,

pj(x) ≥ 0, ∀x ∈ [0,+∞) ∪ {+∞}, ∀j ∈ [n]

}

Similarly, define q(y) to be the probability density of na-
ture choosing y and the strategy space Q of nature is given
by

Q =

{
q :

∫ ∞
0

q(y)dy = 1, q(y) ≥ 0, ∀y ∈ (0,+∞)∪{+∞}

}
When the consumer chooses the mixed strategy p and

nature chooses the stopping time y, the expected cost to the
consumer is:

C(p, y) ,
n∑
j=1

Cj(pj , y)

3In fact, our results can be extended to the case where in
the strategy space the cumulative distribution function is
not absolutely continuous and thus no probability density
function exists.
4For convenience, we denote by

∫ b
a
f(x)dx (a < b) the inte-

gral over (a, b], except that when a = 0, the integral is over
[0, b].



in which

Cj(pj , y) ,
∫ ∞
0

cj(x, y)pj(x)dx

=

∫ y

0

(rjx+ bj)pj(x)dx+

∫ ∞
y

yrjpj(x)dx

is the expected payment to shop j for all j ∈ [n]. Given the
strategy profile 〈p,q〉, the competitive ratio is defined as:

R(p,q) ,
∫ ∞
0

C(p, y)

OPT(y)
q(y)dy (1)

Here OPT(y) is the optimal offline cost and can be seen
to have the following form:

OPT(y) =

{
r1y, y ∈ (0, B]

bn, y > B
(2)

where B is defined as B , bn
r1

.
Note that B is the dividing line between the minimum

buying cost and the minimum renting cost. When y < B,
the offline optimal is always to rent at the first shop, and
when y > B, the offline optimal is to buy the skis at the last
shop. We will show that B determines the effective action
sets of the consumer and nature in section 2.1.1 .

The objective of the consumer is to minimize the worst-
case competitive ratio, i.e., to choose a strategy p ∈ P that
solves the problem

minimize max
y>0

{
C(p, y)

OPT(y)

}
subject to p ∈ P

which is equivalent to the following:

minimize λ (3)

subject to
C(p, y)

r1y
≤ λ

n∑
j=1

∫ ∞
0

pj(x)dx = 1

pj(x) ≥ 0 ∀x ∈ [0,+∞) ∪ {+∞}
∀y ∈ (0,+∞) ∪ {+∞}, ∀j ∈ [n]

2.1.1 Simplifying the Zero-sum Game
In this section, we show that the game can be greatly

simplified and the action set for both the consumer and na-
ture can be reduced. Specifically, nature prefers the strategy
y = +∞ to any other strategy y′ > B. For the consumer,
for any j ∈ [n], she prefers the strategy (j, B) to any other
strategy (j, x′) where x′ > B.

Lemma 1. For nature, any strategy y ∈ [B,+∞) is dom-
inated. While for the consumer, any strategy (j, x) is domi-
nated, in which x ∈ (B,+∞) ∪ {+∞}, ∀j ∈ [n].

Proof. Recall the cost cj(x, y) is defined as follows:

cj(x, y) =

{
rjy, y < x

rjx+ bj , y ≥ x

Thus for any fixed (j, x), cj(x, y) is a non-decreasing function
of y. Further, from (2), we can see that the offline optimal

cost is unchanged when y ≥ B. Thus, for any y ≥ B it holds
that

cj(x, y)

bn
≤ lim
y→+∞

cj(x, y)

bn
=
rjx+ bj
bn

Therefore, any strategy of nature that includes y ≥ B is
dominated by the strategy of never stopping the consumer.

Now for the consumer, for any shop j ∈ {1, · · · , n}, and
any x′ ∈ (B,+∞) ∪ {+∞}, it holds that

cj(B, y)− cj(x′, y) ≤ 0, ∀y ∈ (0, B) ∪ {+∞}

Therefore, any strategy of the consumer that includes buy-
ing at time x′ in any shop is dominated by the strategy of
buying at B in the same shop.

From this lemma, the consumer’s buying time is restricted
in [0, B]. Note that for any (j, x) in which x ∈ [0, B], it holds
that

cj(x,B)

OPT(B)
=

cj(x,+∞)

OPT(+∞)

Therefore, the action set of nature Ψn can be reduced to
Ψn = {y ∈ (0, B]}.

Similarly, in the strategy space of the consumer P, na-
ture Q, the expected cost C(p, y) and the competitive ratio
R(p,q), we can replace +∞ by B.

Comments on B: recall that the boundary B is defined as
min{bi}
min{ri}

= bn
r1

in MSR, while this value is
bj
rj

if shop j is the

only shop in SR. For instance, if only shop n appears in SR,
then the consumer will never consider to buy at any time
x > bn

rn
. However, in MSR, the consumer may want to put

some positive possibility to the strategy of buying at time
x > bn

rn
in shop n (since r1 < rn). The difference between

these two cases is due to the fact that in MSR, the consumer
has the global information of all the shops and the offline
optimal is always to rent at shop 1 at the cost of r1 per unit
time until the total cost reaches the minimum buying price
bn, whereas in SR, the consumer always rents at the cost of
rn ≥ r1 per unit time until bn.

With the above results, problem (3) can now be reduced
to the following:

minimize λ (4)

subject to
C(p, y)

r1y
≤ λ (4a)

n∑
j=1

∫ B

0

pj(x)dx = 1 (4b)

pj(x) ≥ 0 (4c)

∀x ∈ [0, B], ∀y ∈ (0, B], ∀j ∈ [n] (4d)

We will show that the optimal strategy of the consumer
results in exact equality in (4a) in the next subsection.

2.2 Optimal Strategy of the Consumer
In this subsection, we look into the optimal solution p∗ for

(4). In short, p∗ yields the same expected utility for nature
whenever nature chooses to stop. In other words, given p∗,
any pure strategy of nature yields the same utility for both
the consumer and nature. Moreover, at any time x, the
consumer assigns positive buying probability to exactly one
of the shops, say shop j, and j is decreasing as x increases.
Finally, we can see that for any shop j and the time interval



in which the consumer chooses to buy at shop j, the density
function pj(x) is αje

rj/bjx where αj is some constant to be
specified later.

We now state our first theorem that summarizes the struc-
ture of the optimal strategy.

Theorem 1. The optimal solution p∗ satisfies the follow-
ing properties:

(a) There exists a constant λ, such that ∀y ∈ (0, B],

C(p∗, y)

r1y
= λ

(b) There exist n + 1 breakpoints: d1, d2, · · · , dn+1, such
that B = d1 ≥ d2 ≥ · · · ≥ dn ≥ dn+1 = 0, and
∀j ∈ [n], we have

p∗j (x) =

{
αje

rjx/bj , x ∈ (dj+1, dj)

0, otherwise

in which αj satisfies that

αjbje
rjdj/bj = αj−1bj−1e

rj−1dj/bj−1 ∀j = 2, · · · , n

In the following, We will prove property (a) by Lemma 2,
property (b) by Lemma 3-5. All proof details can be found
in our technical report [5].

Lemma 2. ∀y ∈ (0, B], ∃ a constant λ, such that p∗ sat-
isfies that

C(p∗, y)

r1y
= λ (5)

Proof. (sketch) By reductio ad absurdum, we assume

that C(p∗,y)
r1y

, which can be considered as a function with
respect to y, is not a constant. Then we can find a valley in
the graph of this function and there are 3 cases depending
on the positions of the maximum points of the function:

• Maximum points only appear on the left side of the
valley;

• Maximum points only appear on the right side of the
valley;

• Maximum points appear on the both side of the valley.

Then we prove that there is a better strategy in each case
which makes contradiction.

From the above lemma, the problem (4) is thus equivalent
to the following:

minimize λ (6)

subject to (5), (4b), (4c), (4d)

Here are some intuitions of MSR: In the extreme case where
the buying time x is sufficiently small, the consumer will
prefer shop n than any other shops since bn is the minimum
buying price. As x increases, the renting cost weights more
and the skier gradually chooses the shop with lower rent yet
higher buying price. In the other extreme case when the
skier decides to buy at time x close to B, shop 1 may be the
best place since it has the lowest rent. Thus,in the optimal
strategy, the interval [0, B] may be partitioned into several
sub-intervals. In each interval, the consumer only chooses
to buy at one and only one shop. The following two lemmas
formally show that the above intuitions are indeed the case.

Lemma 3. ∀j ∈ [n], we have p∗j (0) < +∞, and ∀x ∈
(0, B], p∗j (x) < 2b1r1

b2n
.

Lemma 4. In the optimal strategy p∗, there exists n + 1
breakpoints B = d1 ≥ d2 ≥ · · · ≥ dn+1 = 0, which partition
[0, B] into n sub-intervals, such that ∀j = 1, · · · , n, ∀x ∈
(dj+1, dj), p∗j (x) > 0 and p∗i (x) = 0 for any i 6= j.

Proof. (sketch) It suffices to show that ∀x ∈ (0, B), ∀ε >
0, if there exists some j such that

∫ x
x−ε p

∗
j (t)dt > 0, then

∀j′ > j, x′ ≥ x, we must have
∫ B
x′ p
∗
j′(t)dt = 0. We use

reductio ad absurdum to prove this proposition.
We first show that if there exists some j′ > j, x′ > x, ε > 0

such that
∫ x
x−ε p

∗
j (t)dt > 0,

∫ x′+ε
x′ p∗j′(t)dt > 0, then there

exist 2 intervals (x1, x1 + θ) ⊆ (x− ε, x) and (x2, x2 + θ) ⊆
(x′, x′ + ε), such that∫ ε0

0

min{p∗j (x1 + θ), p∗j′(x2 + θ)}dθ > 0

We next move some suitable buying probabilities of p∗j′
from (x2, x2 + θ) to (x1, x1 + θ) for shop j′, and correspond-
ingly move some purchase probabilities of p∗j from (x1, x1+θ)
to (x2, x2 + θ) for shop j. Then we obtain a new strategy
p1. We show that ∀y ∈ (0, B], p1 is no worse than p∗, and
∀y ∈ (x1, B], p1 is strictly better than p∗, which makes a
contradiction.

The lemma explicitly specifies the order of the shops in the
optimal strategy: as x increases, the index of the shop where
the consumer assigns positive density decreases. Based on
this lemma, for any j ∈ [n], x ∈ (dj+1, dj), multiplying both
sides of (5) by r1y, and taking twice derivatives, we have

bi
dp∗j (x)

dx
= rjp

∗
j (x) ∀x ∈ (dj+1, dj) (7)

Solving this differentiable equation, we obtain the optimal
solutions as follows5:

p∗j (x) =

{
αje

rjx/bj , x ∈ (dj+1, dj)

0, otherwise
(8)

where αj is some constant. The relationship between αj and
αj−1 is described in the following lemma:

Lemma 5.

αjbje
rjdj/bj = αj−1bj−1e

rj−1dj/bj−1 ∀j = 2, · · · , n (9)

2.3 Computing the Optimal Strategy
In this section we propose a linear time algorithm to com-

pute the optimal strategy for the consumer. First we show
the relationship between the competitive ratio λ and α1 by
the following lemma:

Lemma 6. For any strategy p which satisfies property (b)
in Theorem 1, it holds that

C(p, y)

r1y
= α1

b1
r1
e
r1
b1
B
, ∀y ∈ (0, B]

From the above lemma, we know that minimizing λ is equiv-
alent to minimizing α1. Therefore, problem (6) is now equiv-
alent to the following:

minimize α1 (10)
5Because pj(x) is finite, we say pj(di) = 0 for all i, j ∈ N ,
which does not affect the expected cost at all.



subject to

n∑
j=1

αj
bj
rj

(
e
rj
bj
dj−1 − e

rj
bj
dj

)
= 1 (11)

αje
rjdj/bj = αj−1e

rj−1dj/bj−1 , ∀j = 2, · · · , n
αj > 0, ∀j ∈ [n]

B = d1 ≥ d2 ≥ · · · ≥ dn ≥ dn+1 = 0

where (11) is computed directly from (4b).
In Theorem 1, if we know (d1, d2, · · · , dn+1), then we can

see that αj is proportional to α1. Therefore, we can get

a constant Ωj such that Ωjα1 =
∫ dj
dj+1

pj(x)dx since the

breakpoints are known. Finally we can get a constant Ω =∑n
j=1 Ωj such that Ωα1 =

∑n
j=1(

∫ B
0
pj(x)dx). Using the

fact that
∑n
j=1(

∫ B
0
pj(x)dx) = 1, we can easily solve α1, all

the αj and the whole problem.
Therefore, the computation of p reduces to computing
{d1, d2, · · · , dn+1}. Notice that d1 ≡ B, dn+1 ≡ 0.

In this case, we treat this problem from another prospec-
tive. We first fix α1 to be 1. After that, without considering
the constraint (11), we compute the optimal breakpoints

(d1, d2, · · · , dn+1) to maximize
∑n
j=1(

∫ B
0
pj(x)dx). Denote

the optimal value of this problem as Ω. We then normal-
ize all the probability functions, i.e., reset all the αj to be
αj/Ω. By Lemma 5, we know the ratio λ is proportional
to α1, which is fixed at first and normalized at last. Hence,
maximizing Ω is equivalent to minimizing λ. Notice that all
the probability functions in the remainder of section 2.3 is
unnormalized when α1 = 1.

In the following 2 sections 2.3.1 and 2.3.2, we show some
intuitions and ideas of our algorithm about how to compute
the breakpoints. In Section 2.3.3, we formally propose our
algorithm and prove the optimality and complexity of our
algorithm.

2.3.1 Computing dn

To facilitate further calculations, we denote Pj to be the
probability sum of shop j to shop n, i.e.,

Pj ,
n∑
τ=j

(

∫ B

0

pτ (x)dx) =

n∑
τ=j

(

∫ dj

0

pτ (x)dx)

Now we just need to maximize P1 since by definition
P1 = Ω. To compute some breakpoint dj , we assume that
all the breakpoints {di : i 6= j} are fixed. Since breakpoints
d1, d2, · · · , dj−1 are fixed, parameters α1, α2, · · · , αj−1 are

constants. Therefore,
∑j−2
τ=1(

∫ B
0
pτ (x)dx), part of the prob-

ability sum, is a constant and we just need to maximize the
rest of the sum which is Pj−1.

First we consider how to compute arg maxdn Pn−1(dn)
when given d1, · · · , dn−1, where

Pn−1(dn) = αn

∫ dn

0

e
rnx
bn dx+ αn−1

∫ dn−1

dn

e
rn−1x

bn−1 dx

Notice that αn−1 is a constant but αn depends on dn. From
Lemma 5 we know that:

αn = αn−1bn−1e
(rn−1/bn−1−rn/bn)dn/bn

The following lemma shows the concavity of Pn−1(dn):

Lemma 7. Pn−1(dn) is a strictly concave function.

Notice that P ′n−1(dn) > 0 when dn = 0. This implies that:
if dn < dn−1, we must have P ′n−1(dn) = 0 since it is concave.

Otherwise, dn−1 = dn which means ∀x, pn−1(x) = 0, i.e.,
shop n − 1 does not exist. Thus we can delete shop n − 1
and view shop n− 2 as shop n− 1. Similarly, if dn < dn−2,
P ′n−2(dn) = 0; otherwise delete shop n − 2 and treat shop
n − 3 as shop n − 1. Repeat this procedure until we find
some shop k, such that dn = dn−1 = · · · = dk+1 < dk. Then
dn should be the maximal point because of the concavity
derived by Lemma 7, i.e.,

dn =
bn
rn

ln(
bkrn − bnrk
bn(rn − rk)

)

Notice that dn is always positive.

2.3.2 Computing dj

Notice that dn is unrelated to dn−1 if dn < dn−1. There-
fore, we can work out all the breakpoints dj in descending
order of the subscript of d. Here we show how to obtain dj
after dn, dn−1, · · · , dj+1.

If j = n, we just temporarily take

dn =
bn
rn

ln(
bn−1rn − bnrn−1

bn(rn − rn−1)
)

If j 6= n, our target becomes arg maxdj Pj−1(dj). Accord-
ing to the definition, we have

Pj−1(dj) = αj(Dj +

∫ dj

0

e
rjx

bj dx) + αj−1

∫ dj−1

dj

e
rj−1x

bj−1 dx

where

Dj , −
∫ dj+1

0

erjx/bjdx+

n∑
τ=j+1

ατ
αj

∫ dτ

dτ+1

erτx/bτ dx ≥ 0

Notice that the breakpoints dn, dn−1, · · · , dj+1 are fixed
and we can compute ατ/αj by the following equations which
is derived from Lemma 5:

ατ = ατ−1bτ−1e
(rτ−1/bτ−1−rτ/bτ )dτ /bτ ,∀τ ∈ [n]\[j]

Therefore, Dj is a constant.
It can be seen that we can compute Dj recursively, i.e.,

Dj =
αj+1

αj
(Dj+1 +

∫ dj+1

0

e
rj+1
bj+1

x
dx−

∫ dj+1

0

e
rj
bj
x
dx)

Also note that αj−1 is a constant but αj depends on dj :

αj = αj−1bj−1e
(rj−1/bj−1−rj/bj)dj/bj

The following lemma shows that Pj−1(dj) is a quasi-concave
function:

Lemma 8. If Djrj/bj ≥ 1, we always have P ′j−1(dj) <
0; if Djrj/bj < 1, P ′′j−1(dj) < 0, i.e., Pj−1(dj) is strictly
concave.

Similarly with the computation of dn, if Djrj/bj > 1,
then we always have P ′j−1(dj) < 0 and the optimal dj is
dj+1. Hence we delete shop j and treat shop j − 1 as shop
j. Then we need to recompute dj+1 and let dj = dj+1;
otherwise it is concave and we temporarily get the maximal
point:

dj =
bj
rj

ln(
(bj−1rj − bjrj−1)(1−Djrj/bj)

bj(rj − rj−1)
)

Here if the temporary dj is no larger than dj+1, it means
that the optimal solution is dj+1 because of the constraints



dj+1 ≤ dj ≤ dj−1. So we have dj = dj+1 which means that
∀x, pj(x) = 0. Therefore, we delete shop j and treat shop
j − 1 as shop j. Then recompute dj+1 and temporarily skip
dj . At last we set dj = dj+1.

2.3.3 A Linear Time Algorithm
Now we are ready to show our algorithm for computing

the optimal strategy of the consumer.

Theorem 2. There is an algorithm for computing the
unique optimal strategy of the consumer. The time and space
complexity of the algorithm are linear.

We first show how to construct our algorithm, and analyze
the correctness and the complexity of our algorithm later.

Since delete operations may be executed frequently in the
algorithm, we use a linked list to store the shop info. Each
shop is an element in this linked list and the shop index
decreases when we traverse from the head to the tail. So
the head is shop n and the tail is shop 1. Considering that
the shops appear in the form of linked list in the algorithm,
we rewrite some equations we may use in the algorithm:

Dj =
αprev[j]
αj

(Dprev[j] +

∫ dprev[j]

0

exp(
rprev[j]x

bprev[j]
)dx)

−
∫ dprev[j]

0

exp(
rjx

bj
)dx

=
αprev[j]
αj

Dprev[j] −
bj
rj

(exp(
rjdprev[j]

bj
)− 1)

+
αprev[j]bprev[j]
αjrprev[j]

(exp(
rprev[j]dprev[j]

bprev[j]
)− 1) (12)

Here
αprev[j]
αj

is represented as follow:

αprev[j]
αj

=
bj

bprev[j]
e
(
rj
bj
−
rprev[j]
bprev[j]

)dprev[j]

dj =
bj
rj

ln(
(bnext[j]rj − bjrnext[j])(1−Djrj/bj)

bj(rj − rnext[j])
) (13)

Here is the pseudocode of our algorithm.:

Algorithm 1 MSR Algorithm

1: Dn ← 0;
2: for j ← 1 to n do
3: next[j]← j − 1;
4: prev[j]← j + 1;
5: end for
6: for j ← n to 2 do
7: ComputingBP (j);
8: end for
9: for j ← n to 2 do

10: if dj 6=”decide later” then
11: if dj > B then
12: dj ← B;
13: end if
14: else
15: dj ← dj+1;
16: end if
17: end for

Though we may revise those breakpoints for many times
when running the algorithm, it will still lead to the exact

Algorithm 2 Function ComputingBP (j)

1: if j 6= n then
2: Update Dj according to (12);
3: end if
4: if Dj ≥ bj/rj then
5: dj ←”decide later”;
6: next[prev[j]]← next[j];
7: prev[next[j]]← prev[j];
8: ComputingBP (prev[j]);
9: else

10: Compute dj according to (13);
11: if dj ≤ dj+1 then
12: dj ←”decide later”;
13: next[prev[j]]← next[j];
14: prev[next[j]]← prev[j];
15: ComputingBP (prev[j]);
16: end if
17: end if

optimal solution at the end. Since the feasible solution of
(d2, d3, · · · , dn) is convex and functions Pj−1(·) are always
concave, we have the following properties for the optimal
solution:

If dj−1 > dj , P
′
j−1(dj) ≤ 0; if dj+1 < dj , P

′
j−1(dj) ≥ 0.

So in our computation method, we delete a shop when
and only when the shop should be deleted in the optimal
solution. Notice that Line 5, 6, 7 and Line 15, 16, 17 are what
we actually do when we say we delete shop j. We say a shop
is alive if it has not been deleted. Based on the following
lemma, we rigorously prove the correctness and complexity
of this algorithm.

Lemma 9. After an invocation of ComputingBP (j) is
completed, the temporary breakpoints, whose indexes are less
than or equal to j, td = (tdn, tdn−1, · · · , tdj) are iden-
tical with the optimal solution d∗ = (d∗n, d

∗
n−1, · · · , d∗j ) if

d∗j < d∗next[j]. And all the deletions are correct, i.e., once a
shop j is deleted in the algorithm, d∗j must be equal to d∗j+1.

Proof. (sketch) This lemma is proved by inductions(an
outer induction and an inner induction). In the outer induc-
tion, we prove the lemma for the invocation of ComputingBP (j)
under the 2 assumptions:

• all the deletions in the past is correct;

• ∀τ > j, the lemma holds for ComputingBP (τ)

In each step of the outer induction, we consider 2 cases:

1 one or more shops are deleted during this invocation;

2 no shop is deleted during this invocation.

For Case 1, we construct a sequence of vectors and prove
the correctness of Case 1 based on its monotonicity. The
monotonicity of the sequence is also proved by induction
(the inner induction). And Case 2 is proved based on Case
1.

Here td = (tdn, tdn−1, · · · , tdj) are the temporary values
of dn, dn−1, · · · , dj just after this invocation, d∗n, d

∗
n−1, · · · , d∗2

are the optimal breakpoints, and next[·] and prev[·] denote
the current state of the linked list, not the eventual result.



Proof. (Theorem 2) We first show the correctness of the
algorithm. According to Lemma 9, we know that all the
deletions are correct. Also, we know that ∀j1, j2 such that
1 < j1 < j2, and that shop j1 and shop j2 are alive, tdj1 >
tdj2 when the algorithm terminates. There are 2 cases:

Case 1: B = d∗1 > d∗prev[1], the final solution is the unique
optimal solution by Lemma 9.

Case 2: B = d∗1 = d∗prev[1]. Similar to the proof of
Case 1 in Lemma 9, the solution of the alive breakpoints
td∗ = (td∗n, td

∗
next[n], · · · , td∗prev[1], d∗1), satisfying that ∀τ ∈

[n], td∗τ = min{tdτ , d∗1}, is the unique optimal solution.
Next, we analyze the complexity of the algorithm. Obvi-

ously, the space complexity is O(n). For the time complex-
ity, we just need to prove that this algorithm invokes the
function ComputingBP for O(n) times. The main function
invokes ComputingBP for O(n) times. And notice that a
shop is deleted once ComputingBP is invoked recursively
by ComputingBP . The algorithm can delete O(n) shops
at most, therefore the total number of the invocations is
O(n).

2.4 Optimal Strategy of Nature
Now we briefly show the optimal strategy q∗ of nature in

the following theorem:

Theorem 3. Suppose that the probability for nature of
choosing y = B (actually y = +∞) is q∗B. The optimal
strategy q∗ of nature satisfies the following properties:

(a) ∀j > 1, we have
∫ d∗+j
d∗−j

q∗(y)dy = 0.

(b) q∗(y) = βjye
−
rj
bj
y
, y ∈ (d∗j+1, d

∗
j ).

(c) β1 = (qBr1/Bb1)e
r1
b1
B

.

(d)
bj
rj
βje
−
rj
bj
d∗j =

bj−1

rj−1
βj−1e

−
rj−1
bj−1

d∗j , j = 2, 3, . . . , n.

Proof. (sketch) When the consumer chooses a pure strat-
egy (j, x) and nature chooses q∗, the competitive ratio is as
follows:

Rj(x,q
∗) ,

∫ x

0

rj
r1
q∗(y)dy +

∫ B

x

rjx+ bj
r1y

q∗(y)dy

We know that p∗ and q∗ reach a Nash equilibrium with a
competitive ratio λ and that p∗j (x) > 0 when x ∈ (d∗j+1, d

∗
j ).

Therefore, Rj(x,q
∗) = λ when x ∈ (d∗j+1, d

∗
j ) and the 4

properties of q∗ can be easily derived from it.

Recall that d∗ is computed by Algorithm 1. Thus ∀j ∈ [n],
we can compute βj/qB and we can obtain 1/qB by comput-

ing the sum
∑n
τ=1

∫ dτ+1

dτ
q(y)/qBdy. Since the sum of prob-

ability is 1, i.e.,
∫ B
0
q(y)dy = 1, it is not hard to work out

q∗ after normalization.

2.5 Including Switching Cost
In this subsection, we consider an extension, the multi-

shop ski rental with switching cost problem(also MSR-S), in
which we allow the consumer switches from one shop to an-
other, but with some extra fee to be paid. At any time,
suppose the consumer chooses to switch from shop i to shop
j, she has to pay for an extra switching cost cij ≥ 0. If there
exists some i 6= j, such that cij = +∞, then the consumer
cannot directly switch from shop i to shop j. Consider the
following 2 cases:

• If the consumer is allowed to switch from shop to shop
freely, i.e. the switching cost is always 0, she will op-
timally rent at the shop with the lowest renting price
and buy at the shop with the lowest buying price. All
that she concerns is when to buy the skies. Thus,
this problem (MSR-S) is reduced to the basic ski rental
problem (SR).

• If the switching cost is always +∞, she will never
switch to another shop and the MSR-S becomes MSR.

We will prove that the consumer never switches between
shops even in MSR-S later.

The settings of MSR-S can be viewed as a directed graph
G = (V,A), where V = {1, · · · , n}, and A = {(i, j) : cij <
+∞}. Each arc (i, j) ∈ A has a cost cij . We define a path
p ⊆ G as a sequence of arcs. Define the cost of p as the
summation of the costs of all arcs on p. Note that if the
consumer is allowed to switch from shop i to shop j (i 6= j),
there must be a path p which starts at i and ends at j.

It is clear that if the consumer decides to switch from
shop i to shop j ((i, j) ∈ A) at any time, she will choose
the shortest path from i to j in the graph G. Denote the
cost of the shortest path from i to j by c∗ij . We obtain that
c∗ij ≤ cij , for any (i, j) ∈ A. Moreover, for any different
i, j, k ∈ V such that (i, j), (j, k), (i, k) ∈ A, we have:

c∗ik ≤ c∗ij + c∗jk (14)

Comparing to MSR, MSR-S has a much richer action set for
the consumer, where the consumer is able to choose where
to rent and for how long to rent at that shop.

Although we allow the consumer to switch from shop to
shop as many times as she wants, the following lemma shows
that the consumer will never choose to switch to another
shop and continue renting, i.e. the only moment that the
consumer will switch is exactly when she buys the skis.

Lemma 10. Any strategy which includes switching from
one shop to another shop and continuely renting the skis is
dominated.

Proof. Given an action ψ, we assume that the buying
time in ψ is x and there exists a switching operation strictly
before x. Now we need to prove that ψ is dominated.

We assume that the first switching operation in ψ is from
shop i to shop j at time x0 (0 ≤ x0 < x). If there are
more than one switching operations at time x0, they can be
considered as a big switching operation. But the switching
cost is the sum of all the switching cost at time x0. We
assume that the last switching operation at x0 is from some
shop to shop k. If the switching cost at x0 is larger than c∗ik,
then obviously it is dominated. But if not, then there will
be 2 cases.

Case 1 : when ri < rk,
Denote by x1 the switching time just after x0. But if

switching only happens at time x0 in ψ, we let x1 to be x.
It can be seen that x0 < x1. Since ri ≤ rk, in action ψ it is
better for the consumer to move the switching operation(s)
from time x0 to time x1. It can be verified that the cost
remains the same when y < x0 and decreases when y ≥ x0.
Thus, ψ is dominated.

Case 2 : when ri ≥ rk,
Consider another action ψ1: the consumer enters shop k

at the very beginning and does not execute any switching
operation at time x0, but she acts the same as ψ after time



x0. It can be verified that the cost does not increase when
y < x0 and decreases when y ≥ x0. Thus, it is dominated
by ψ1.

This lemma significantly reduces the action set of the con-
sumer to the same one as MSR. Thus, if the consumer con-
siders to switch, she must switch to another shop at the
buying time. Further, she chooses a shop such that the sum
of the buying cost and the switching cost (if any) is mini-
mized. Once the consumer decides to switch for buying, she
will switch at most once, since the buying cost only increases
otherwise. Therefore, for any strategy, suppose s is the shop
in which the consumer rents the skis right before the buying
time, we define the buying price of s as follows:

b′s = min{bs, bj + csj , ∀j 6= s}

Observe that once s is settled, b′s is settled. As a result, MSR-
S is reduced to MSR, in which for any shop j, the rent is still rj
per unit time while the buying price b′j is min{bj ,mini 6=j{bi+
cji}}.

3. SKI RENTAL WITH ENTRY FEE
In this section, we discuss another extension of MSR, the

multi-shop ski rental with entry fee included problem (MSR-
E). In this problem, all the settings are the same to those
of MSR, except that each shop has an entry fee. Once the
consumer enters a shop, she pays for the entry fee of this
shop and cannot switch to another shop. Our goal is to
minimize the worst case competitive ratio. Notice that MSR

can be viewed as a special case of MSR-E in which the entry
fee of each shop is zero.

We introduce this problem not only as an extension of MSR,
but more importantly, as a necessary step to solve a more
general extension, the (MSR-ES) problem in next section. We
will show that MSR-ES can be converted into MSR-E with
minor modifications.

3.1 Single Shop Ski Rental with Entry Fee
We start by briefly introducing the special case of MSR-E

when n = 1. The entry fee, renting price and buying price
are supposed to be a ≥ 0, r > 0 and b > 0. Without loss of
generality, we assume that r = 1.

It can be verified that

(i) Using dominance, the buying time of the consumer
x ∈ [0, b], and the stopping time chosen by nature y ∈
(0, b].

(ii) For all y ∈ (0, b], the ratio is a constant if the consumer
chooses the optimal mixed strategy.

(iii) No probability mass appears in (0, b].

By calculation, we obtain the following optimal mixed
strategy:

• The probability that the consumer buys at time x = 0
is p0 = a/((a+ b)e− b).

• The probability density function that the consumer

buys at time x ∈ (0, b] is p(x) = exp(x/b)

b(e− b
a+b

)
.

• The competitive ratio is e

e− b
a+b

.

Note that the biggest difference from MSR is that p0 may
be probability mass, which means that the consumer may
have non-zero probability to buy at the initial time.

3.2 Analysis of MSR-E
In this problem, assume that there are n shops in total.

For any shop j ∈ [n], the entry fee, renting price and buying
price of shop j are aj ≥ 0, rj > 0 and bj > 0, respectively.
Similar to the procedures in MSR, we use a tuple (j, x) in
which j ∈ [n], x ∈ [0,+∞) ∪ {+∞} to denote an action for
the consumer and a number y ∈ (0,+∞)∪{+∞} for nature.

Without loss of generality, in this problem, we assume
that

• r1 ≤ r2 ≤ · · · ≤ rn;

• ∀i, j, ai < aj + bj ;

• ∀i < j, ai > aj or ai + bi > aj + bj .

The second condition is because that shop i is dominated
by shop j if ai ≥ aj + bj . For the third condition, we know
ri ≤ rj since i < j. So shop j is dominated by shop i if we
also have ai ≤ aj and ai + bi ≤ aj + bj .

Denote B as follows:

minmize B

subject to ∀i, ai +Bri ≥ min
j

(aj + bj)

Similar to Lemma 1 in MSR, we reduce the action sets for
both players by the following lemma:

Lemma 11. For nature, any action y ∈ [B,+∞) is dom-
inated. For the consumer, any action (j, x) is dominated, in
which x ∈ (B,+∞) ∪ {+∞}, j ∈ [n].

Similar to MSR, the consumer’s action set is reduced to
buying time x ∈ [0, B], and nature’s action set is reduced to
{y ∈ (0, B]}.

The strategy spaces for both the consumer and the nature
are identical to those in MSR. Similarly, we use p to denote a
mixed strategy of the consumer and p∗ to denote the optimal
mixed strategy. If the consumer chooses mixed strategy p
and nature chooses y, we denote the cost function as follows:

C(p, y) =
∑
j∈[n]

(∫ y

0

(aj + rjx+ bj)pj(x)dx

+

∫ B

y

(aj + rjy)pj(x)dx

)
(15)

We define OPT(y) as the offline optimal strategy when na-
ture chooses the action y, i.e.

OPT(y) = min
j
{aj + rjy}, y ∈ (0, B]

By [8], we can compute the function OPT(y) in linear time.

The objective of the consumer is minp maxy
C(p,y)
OPT(y)

.

Similar to MSR, we give the following lemmas:

Lemma 12. For the optimal strategy p∗ of the consumer,
C(p∗,y)
OPT(y)

is a constant for any y ∈ (0, B],.

Lemma 13. ∀x ∈ (0, B], p∗j (x) < +∞.

The problem is formalized as follows:

minimize λ (16)

subject to
C(p, y)

OPT(y)
= λ, ∀y ∈ (0, B] (16a)



n∑
j=1

∫ B

0

pj(x)dx = 1 (16b)

pj(x) ≥ 0, ∀x ∈ [0, B] (16c)

Note that there may be probability mass at x = 0. For
Problem 16, we find that the optimal mixed strategy p∗ of
the consumer is also segmented.

Lemma 14. In the optimal mixed strategy p∗, there exists
n + 1 breakpoints B = d1 ≥ d2 ≥ · · · ≥ dn+1 = 0, which
partition [0, B] into n sub-intervals, such that ∀j = 1, · · · , n,
∀x ∈ (dj+1, dj), p∗j (x) > 0 and p∗i (x) = 0 for any i 6= j.

Remark: Though we prove the form of the optimal so-
lution to MSR-E, computing the analytical solution is very
challenging. The point mass at x = 0 makes this problem
much more difficult than MSR, because one needs to guar-
antee the nonnegativity of this probability mass. Moreover,
the non differentiable points of OPT(y), which we call the
offline breakpoints, complicate the probability density func-
tion form in each segment (dj+1, dj). In fact, we can obtain
the exact analytic optimal solution when n = 2.

4. SKI RENTAL WITH ENTRY FEE AND
SWITCHING

Now we introduce the last extension of MSR, the entry fee
included, switching allowed problem (MSR-ES). All the set-
tings are identical to those of MSR-E, except that the con-
sumer is allowed to switch at any time. When a consumer
enters or switches to a shop, she pays the entry fee of the
shop. For instance, if a consumer enters shop 1 at first, then
switches from shop 1 to shop 2 and returns to shop 1 at last,
she pays the entry fee of shop 1 twice and the entry fee of
shop 2 once.

Similar to MSR-E, there exist n shops. The entry fee, rent-
ing price, buying price of shop j are denoted by aj ≥ 0, rj >
0, bj > 0, respectively. Without loss of generality, we assume
that

• r1 ≤ r2 ≤ · · · ≤ rn;

• ∀i, j, ai < aj + bj ;

• ∀i < j, ai > aj or ai + bi > aj + bj .

As in the MSR-S case, if there exists i, j ∈ [n] such that
bi > aj + bj , then instead of buying in shop i, the consumer
will switch from shop i to shop j to buy skis 6. This is
equivalent to setting bi to be minj 6=i{aj + bj}. Therefore,
without loss of generality, we assume that

• ∀i, j, bi ≤ aj + bj .

In the remainder of this section, we first define the action
set and formulate our problem. Then, we show that the
strategy space can be reduced by Lemma 15, 16 and 17. In
Lemma 18, we show that for each switching operation, the
operations of the consumer before or after the switching is
not important. The only things we care about are when the
switching happens, and which shops the switching operation
relates to. Thus, we can construct a virtual shop for each
switching operation, and (nearly) reduce this MSR-ES prob-
lem to MSR-E. Finally, we show that MSR-ES has the similar
nice properties as MSR-E which we have known in Lemma 13
and 14.
6This phenomenon is called “switching for buying”.

4.1 Notations and Analysis of MSR-ES

4.1.1 Reduced Strategy Space
The action set for nature is {y > 0}, defined as before.

To represent the action set formally, we firstly introduce
the operation tuple σ = (i, j, x) to denote the switching
operation of switching from shop i to shop j at time x. For
special cases, (0, j, 0) denotes the entering operation that
the consumer enters shop j at the very beginning; (i, 0, x)
denotes the buying operation that the consumer buys at
shop i at time x. An operation tuple can also be represented
as (j, x) for short, denoting the switching operation to shop
j at time x if j > 0, the entering operation if x = 0, and the
buying operation at time x if j = 0.

Then, an action ψ is expressed as a sequence (may be
infinite) of the operation tuples:

ψ = {(j0, x0), (j1, x1), (j2, x2), · · · }

satisfying that

• 0 = x0 ≤ x1 ≤ x2 ≤ · · · ;

• if there exists x ≥ 0 such that (0, x) ∈ ψ, it is the last
element in ψ.

or the full form with the same constraints:

ψ = {(0, j0, x0), (j0, j1, x1), (j1, j2, x2), · · · }

Similar to other extensions, we reduce the action set. In this
model, the definition of B is the same as those of MSR-E:

minimize B

subject to ∀i, ai +Bri ≥ min
j

(aj + bj)

and we give the following lemma:

Lemma 15. From the perspective of nature, any strategy
y ∈ [B,+∞) is dominated. While for the consumer, any
strategy in which the buying time x ∈ (B,+∞) ∪ {+∞} is
dominated.

Similar to MSR, we reduce the consumer’s buying time to
the interval [0, B], and nature’s action set to {y ∈ (0, B]}.

The following lemma shows that a consumer may switch
from shop i to shop j for renting, only when ri > rj and
ai < aj .

Lemma 16. If a strategy of the consumer:

ψ = {(0, j0, x0), (j0, j1, x1), · · · , (j|ψ|−2, 0, x|ψ|−1)}

satisfies any of the following conditions, then it is domi-
nated.

• ∃0 < τ < |ψ| − 1 such that xτ−1 = xτ ;

• ∃(i, j, x) ∈ ψ such that ri ≤ rj and (j, 0, x) /∈ ψ;

• ∃(i, j, x) ∈ ψ such that ai ≥ aj and (j, 0, x) /∈ ψ.

Here we give some intuitions. In these three cases, we can
construct a new action ψ′ by deleting one specified operation
from ψ, and show that ψ is dominated by ψ′.

This lemma rules out a huge amount of dominated strate-
gies from our action set and allows us to define the operation
set:

Σ ,

{
σ = (i, j, x) : i, j ∈ [n], ri > rj , ai < aj ,



x ∈ (0, B]

}⋃{
(0, j, 0) : j ∈ [n]

}
⋃{

(j, 0, x) : j ∈ [n], x ∈ [0, B]

}
Thus, we only need to consider such an action set:

Ψc ,

{
ψ = {(0, j0, x0), (j0, j1, x1), · · · , (j|ψ|−2, 0, x|ψ|−1)}

: 0 = x0 < x1 < · · · < x|ψ|−2 ≤ x|ψ|−1 ≤ B,
rj0 > rj1 > · · · > rj|ψ|−2

,

aj0 < aj1 < · · · < aj|ψ|−2

}
Since rj0 > rj1 > · · · > rjk , we get j0 > j1 > · · · > jk and
2 ≤ |ψ| ≤ n+ 1.

4.1.2 Mathematical Expression of the Cost, Ratio and
the optimization problem

For nature’s action y ∈ (0, B] and the consumer’s ac-
tion ψ = {(j0, x0), · · · , (0, x|ψ|−1)} ∈ Ψc, we define the cost
c(ψ, y) as follows:

c(ψ, y) ,


∑k−1
τ=0[ajτ + rjτ (xτ+1 − xτ )] + rjk (y − xk),

if ∃0 < k < |ψ|, xk−1 ≤ y < xk;∑|ψ|−2
τ=0 (ajτ + rjτ (xτ+1 − xτ )) + bj|ψ|−2

,

if y ≥ x|ψ|−1.

For any action ψ = {(j0, x0), · · · , (0, x|ψ|−1)}, we use s(ψ)
to denote the order of the operations:

s(ψ) , {(0, j0), (j0, j1), · · · , (j|ψ|−2, 0)}

or the short form:

s(ψ) , {j0, j1, · · · , j|ψ|−2, 0}

Further, we define S as the collection s(Ψc) as follows:

S , {s = {j0, j1, · · · , jk, 0} : k ≥ 0,

rj0 > rj1 > · · · > rjk , aj0 < aj1 < · · · < ajk}

Note that j0, j1, · · · , jk ∈ [n] and {0} /∈ S, so the amount
of elements in S is upper bounded by |S| ≤ 2n − 1.
We group all the actions in Ψc whose s(ψ) are identical.
Thus, we partition Ψc into |S| subsets.
For any action ψ, let x(ψ) denote the sequence of the oper-
ation time, defined as follows:

x(ψ) , (x1, · · · , x|ψ|−1)

For each operation order s ∈ S, we define Xs as the col-
lection {x(ψ) : s(ψ) = s}, i.e.,

Xs , {x = (x1, x2, · · · , x|s|−1) : 0 < x1 < · · · < x|s|−1 ≤ B}

We observe that any s ∈ S and x ∈ Xs can be combined
to a unique action ψ(s,x). Further, we can use cs(x, y) and
c(ψ(s,x), y) interchangeably.

For each s ∈ S, we define the probability density function
fs : Xs → [0,+∞) ∪ {+∞} 7 , which satisfies∑

s∈S

∫
· · ·
∫

x∈Xs

fs(x)dx = 1

7 fs(x) = +∞ represents probability mass on x.

Let f = {fs : s ∈ S} denote a mixed strategy for the
consumer. Given a mixed strategy f of the consumer and
nature’s choice y, the expected competitive ratio is defined
as follows:

R(f , y) ,
C(f , y)

OPT(y)
(17)

where OPT(y) = minj∈[n]{aj + rjy}, and

C(f , y) ,
∑
s∈S

∫
· · ·
∫

x∈Xs

cs(x, y)fs(x)dx (18)

The objective of the consumer is minf maxy R(f , y). The fol-
lowing lemma proves that ∀y ∈ (0, B], R(f∗, y) is a constant
in which f∗ is an optimal mixed strategy.

Lemma 17. If f∗ is an optimal solution of the problem
arg minf maxy R(f , y), then there exists a constant λ such
that ∀y ∈ (0, B], R(f∗, y) = λ.

The formalized optimization problem is as follows:

minimize λ (19)

subject to
C(f , y)

OPT(y)
= λ,∀y ∈ (0, B] (19a)∑

s∈S

∫
· · ·
∫

x∈Xs

fs(x)dx = 1 (19b)

fs(x) ≥ 0,∀s ∈ S (19c)

4.2 Reduction to MSR-E
For a mixed strategy f , we define the probability density

function of an operation σ = (i, j, x) as follows:

p(f)(σ) ,
∑

s∈S:(i,j)∈s

∫
· · ·
∫

x−{x}:σ∈ψ(s,x)

fs(x)d(x−{x}) (20)

where x−{x} is the vector x in which the element correspond-

ing to x is eliminated. Here p
(f)
(i,j)(x) can also be viewed as a

marginal probability density function. Also the p.d.f of an
operation can be expressed in another form:

p
(f)
(i,j)(x) , p(f)((i, j, x))

Then we give the following lemma:

Lemma 18. For any 2 mixed strategies f1, f2 for the con-
sumer, we have C(f1, y) = C(f2, y) for all y ∈ (0, B] if

p(f1)(σ) = p(f2)(σ) for all σ ∈ Σ, i.e., for a mixed strat-

egy f , we only care about its marginal p(f)(σ).

Therefore, the target of the problem converts from the
optimal f to the optimal p. Note that for the switching
operation from shop i to shop j, we do not care about which
action ψ it belongs to. Instead, the only thing that matters
is when this switching operation happens. This is similar
to the one shop case, in which we only care about when
the consumer decides to buy. Thus, for each switching pair
(i, j), we consider it as a virtual shop. Among these O(n2)
virtual shops, no switching will appear. Thus, we show that
the MSR-ES problem is almost the same as MSR-E.

Now we show our settings for virtual shops. For all i, j ∈
[n] such that ai < aj , ri > rj , we define the virtual shop (i, j)
with entry fee a(i,j) = ai−aj , renting price r(i,j) = ri−rj and
buying price b(i,j) = aj . We regard the switching time from
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i to j as the buying time in virtual shop (i, j). For special
case, the prices of virtual shop (j, 0) is the same as the real
shop j. Through this setting, it is not hard to verify that for
any action ψ and any 0 ≤ y ≤ B, the cost function c(ψ, y)
is exactly the summation of the cost in the corresponding
virtual shops. Similar to a real shop, we define the cost for
each virtual shop (i, j):

C(i,j)(p
(f), y) ,

∫ y

0

(a(i,j) + r(i,j)x+ b(i,j))p
(f)
(i,j)(x)dx

+

∫ B

y

(a(i,j) + r(i,j)y)p
(f)
(i,j)(x)dx

Now we are ready to formalize MSR-ES by the following the-
orem:

Theorem 4. The optimization problem for the consumer
can be formalized as follows:

minimize λ (21)

subject to
C(f , y)

OPT(y)
= λ (21a)

C(f , y) =
∑

(i,j)∈[n]2:ai<aj ,ri>rj

C(i,j)(p
(f), y)

+
∑
j∈[n]

C(j,0)(p
(f), y), ∀y ∈ [0, B]

(21b)∑
j∈[n]

∫ B

0

p
(f)
(j,0)(x)dx = 1 (21c)

∑
j∈[n]:aj<ai,rj>ri

∫ B

y

p
(f)
(j,i)(x)dx ≤

∫ B

y

p
(f)
(i,0)(x)dx

+
∑

j∈[n]:ai>aj ,ri<rj

∫ B

y

p
(f)
(i,j)(x)dx, ∀i ∈ [n], y ∈ (0, B]

(21d)

Thus, MSR-ES can be regarded as MSR-E with O(n2) shops.
The difference is that the summation of the buying probabil-
ities in each virtual shop may be larger than 1. Fortunately,
those nice properties of MSR-E still hold for MSR-ES.

Lemma 19. Lemma 13 and 14 still hold for the virtual
shops in the MSR-ES problem.

As in other extensions before, the probability density func-
tion of the virtual shops is segmented and each segment is
an exponential function. The consumer only assigns positive
buying probability in exactly one virtual shop at any time.
As the buying time increases, she follows the virtual shop
order in which the ratio between buying price and renting
price is increasing.

In the 3 figures above, we give a simple example when
n = 2 in order to make Lemma 19 easier to understand. We
approach the optimal strategy through the discrete model
and the figures show the p.d.f. functions in the optimal
strategy. It can be seen that Lemma 19 is verified. Since
there is a proof for Lemma 19, we do not give more com-
plicated examples. The parameters for the 2 shops are as
follows: a1 = 80, r1 = 1, b1 = 110, a2 = 20, r2 = 2, b2 = 180.

5. CONCLUSIONS
In this paper, we consider the multi-shop ski rental prob-

lem (MSR) and its extensions (MSR-S, MSR-E, and MSR-ES), in
which there are multiple shops and the consumer wants to
minimize the competitive ratio.

For each problem, we prove that in the optimal mixed
strategy of the consumer, she only assigns positive buying
probability to exactly one shop at any time. The shop order
strongly relates to the ratio between buying price and rent-
ing price, even in which entry fee is involved. Further, in
the basic problem (MSR), we derive a linear time algorithm
for computing the optimal strategy of the consumer. For
MSR-S, we prove that under the optimal mixed strategy, the
consumer only switches to another shop at the buying time.

In problems MSR-E and MSR-ES, we show that the optimal
strategy can be solved if the breakpoints are known. Similar
to the basic problem (MSR), we conjecture that the quasi-
concave property also holds for these two variants. Further,
we conjecture that there exists an iteration algorithm us-
ing gradient decent technique, which might converge to the
optimal solution.
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