
Stochastic Extreme Value

Optimization

Thesis Submitted to

Tsinghua University

in partial fulfillment of the requirement

for the degree of

Master of Science

in

Computer Science and Technology

by

Liu Yu

Thesis Supervisor: Assistant Professor Li Jian

January 2017

II

Stochastic Extreme Value Optimization

by

Liu Yu

Submitted to the Institute for Interdisciplinary Information Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

at

TSINGHUA UNIVERSITY

January 2017

c© TSINGHUA UNIVERSITY 2017. All rights reserved.

Author .
Institute for Interdisciplinary Information Sciences

Oct 28, 2016

Certified by .
Li Jian

Assistant Professor
Thesis Supervisor

IV

Abstract

In this thesis, we study several stochastic optimization problems in which we want to
optimize the expectation of the extreme values, including maximum-element, minimization
version of maximum-element and minimum-element. Formally, we obtain the following
results:

1. We first study maximum-element. It takes a set of random variables {Xi}ni=1 (with
known distributions) and a collection of feasible sets (constraint) F ⊂ 2[n] as inputs,
and outputs a feasible set S ∈ F which maximizes the value of E[maxi∈S Xi]. In
the minimization version of maximum-element, we try to minimize the value of
E[maxi∈S Xi].

We obtain a constant approximation for maximum-element if there is a constant
approximation for the deterministic problem max-sum(find a feasible set S ∈ F which
maximizes the value of

∑
i∈S vi). Compared with previous results, our approximation

works for many combinatorial constraints. Furthermore, we obtain the first PTAS for
maximum-element if there is a psuedopolynomial time algorithm for the exact-sum
problem. The best previous approximation ratio is 1 − 1/e [6], based on submodular
maximization.

2. We can obtain the same constant approximation and PTAS for the minimization ver-
sion of maximum-element, by a slight modification of the above algorithm.

3. We also study the minimum-element problem, which takes a set of random vari-
ables {Xi}ni=1 with costs {ci}ni=1 and a budget C as inputs, and outputs a set S with
total cost at most C which minimizes the value of E[mini∈S Xi]. If all variables are
supported on {0, 1, . . . ,m−1}, we obtain a bi-criteria algorithm which outputs a (1+ε)-
approximation with cost at most O(log log logm)C, improving the best previous result
which incurs a cost at most O(log logm)C [10].

V

VI

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Our Contributions . 3

1.3.1 MAXIMUM-ELEMENT . 5

1.3.2 MINIMUM-ELEMENT . 6

1.4 Structure of this Thesis . 7

2 Preliminaries 9

2.1 Terminologies . 9

3 MAXIMUM-ELEMENT 13

3.1 Problem Formulation . 13

3.2 Hardness . 14

3.3 A Constant Approximation . 15

3.3.1 Special Case: Bernoulli Distributions 16

3.3.2 General Cases . 18

3.4 PTAS . 22

3.4.1 Discretization . 22

3.4.2 Signatures . 25

3.4.3 Enumerating Signatures . 27

3.5 Minimization version of maximum-element 28

VII

3.6 MAXK . 31

4 MINIMUM-ELEMENT 35

4.1 Problem Formulation . 35

4.2 Hardness . 35

4.3 CIP Approach . 36

4.4 Our CIP Approach . 37

5 Conclusion 45

Bibliography 47

Curriculum Vitae 52

VIII

Chapter 1

Introduction

1.1 Motivation

Recent years data sets grow rapidly. They are increasingly collected by mobile devices,

cameras, remote sensors, software logs and other cheap and numerous information-sensing

devices. Along with the increasing of the size of data collected, uncertainty arises in many

applications, including social networks, sensor networks, databases, social science economics

and so on. Many applications require supports of methods for dealing with uncertain data.

Here we give some examples to show where the uncertainty comes and how we model them.

• Bayesian Optimal Mechanism Design [19]: In economics, mechanism design (in

particular auctions) is an important research area. A good mechanism should allocate

the items and decides the payment based on the private value of the items of each

bidder. However no one knows the exact value except the bidder herself. Hence,

we model her value as a random variable following some prior distribution (probably

computed from historical data of the bidder), and design mechanisms according to the

distributions.

• Sensor Network: Sensor networks spread everywhere and produce large amount of

data. Due to physical noise or detection precision, much uncertain data is produced

at the same time. In such case, uncertain sensor readings are usually modeled by

1

probabilistic models. For example, Deshpande et al. [8] modeled data as Gaussian

distributions.

Stochastic optimization is a method for tackling uncertainty by modeling uncertainty as

probability distributions of inputs. The field was initiated by Dantzig [7]. In the follow

decades, it has been studied extensively, and attracts more and more attentions from com-

puter science community in recent years. In my dissertation research, I focus on one class of

important problems in this domain: stochastic extreme value optimization.

Stochastic extreme value optimization: In a large variety of practical problems, people

concern the extreme value (i.e., the maximum value, the minimum value). Here we list some

examples.

• In a first price auction, the price of the item is determined by the highest bid.

• Consider a scenario where one agent wants to produce some object. He delivers the jobs

of producing components to different factories. The factory with the latest complete

time determines the complete time of the whole production.

In such problems, people want to optimize an extreme value as it affects results signifi-

cantly. When involving uncertain data, we call such problems “stochastic extreme value

optimization”.

1.2 Related Work

In the past decades the stochastic combinatorial optimization has been widely and deeply

studied. Many combinatorial optimization problems themselves are NP-hard. The problem

usually looks harder involving uncertainty and people proved some of them are actually

harder. For example, a variant of adaptive stochastic knapsack is PSPACE-hard [3]. While

an optimal solution is hard to find, people make efforts to find approximate solutions effi-

ciently. People have developed many techniques to deal with approximating problems in the

2

field. More and more problems are studied in different models: Adaptive stochastic knapsack

[3, 17], stochastic matching [1, 2], stochastic set cover [22, 13], stochastic bin packing [17]

and so on. We refer interested reader to [16] for a comprehensive survey.

In some stochastic optimization problems, it is possible to make observation on inputs.

Upon one observation of one input item, we can find out the exact value (which is a sample

from the given distribution). Observations need extra cost. Hence we should decide which

inputs to observe to maximize the improvement using as little cost as possible. Goel et al.

[10] modeled such situations and defined a class of stochastic optimization problems called

“model-driven optimization”, which generalizes the stochastic extreme value optimization

with knapsack constraint.

1.3 Our Contributions

First we define two stochastic extreme value optimization problems maximum-element

and minimum-element formally here.

Problem 1.3.1 (maximum-element). Inputs: a set of independent non-negative random

variables {Xi}ni=1 and a collection of feasible solutions (a combinatorial constraint) F ⊂ 2[n];

Outputs: a set S ∈ F , which maximizes the value E[maxi∈S Xi].

Note that F may contain exponential number of feasible sets and is represented implicitly

in the input. For example, each random variable is associated with an edge of a graph and

F is the set of all spanning trees of the graph. Distributions of random variables can

be inputted in two ways: lists of supports and corresponding probabilities, which works

for discrete random variables; and oracles returning samples following the corresponding

distributions, which works for both discrete and continuous random variables. In this thesis,

we only consider discrete random variables, leaving the case of continuous random variables

as future work.

Problem 1.3.2 (minimum-element). Inputs: a set of independent non-negative random

variables {Xi}ni=1, costs {ci}, and a budget C;

3

Outputs: a set S with total cost at most C, which minimizes the value E[mini∈S Xi].

In the minimization version of maximum-element, we want to minimize the value

E[maxi∈S Xi].

Relationship between MAXIMUM-ELEMENT and MINIMUM-ELEMENT: Giv-

en a set of random variables {Xi}, we can construct a set of random variables {Yi} with

Yi = M − Xi, where M is large enough to make sure all Yi’s are non-negative. Therefore

maxi∈S Xi = M − mini∈S Yi, and solving maximum-element over {Xi} is equivalent to

solving minimum-element over {Yi}. When finding the exact solution, these two problems

are both NP-hard. However, they are quite different in approximation hardness.

We also define three related problems for stating our results.

Problem 1.3.3 (max-sum). Inputs: a set of non-negative real numbers {vi}ni=1 and a con-

straint F ⊂ 2[n];

Outputs: a set S ∈ F , which maximizes the value
∑

i∈S vi.

Problem 1.3.4 (min-sum). Inputs: a set of non-negative real numbers {vi}ni=1 and a con-

straint F ⊂ 2[n];

Outputs: a set S ∈ F , which minimizes the value
∑

i∈S vi.

max-sum and min-sum generalizes many classical problems, such as maximum matching,

max cut, minimum spanning tree, shortest path.

Problem 1.3.5 (exact-sum). Inputs: a set of integers {vi}, a target integer T and a

constraint F ⊂ 2[n];

Outputs: a set S ∈ F with
∑

i∈S vi = T .

maximum-element and minimum-element are first introduced by Goel et al. in [10]

as special cases of their Model-driven Optimization problem, defined as follows:

Problem 1.3.6. We are given the distributions of non-negative independent random vari-

ables {Xi}n1 . These variables are observable: we can find the exact value of Xi by cost ci.

4

Given an objective function f : 2{Xi}
n
1 → R and budget C, the goal is to choose a set of

variables S with cost at most C to observe and optimize the expected value of f(S). The

function is evaluated after observations and the expectation is over all possible outcome of

observations.

1.3.1 MAXIMUM-ELEMENT

As this problem is NP-complete, people studied approximation algorithms. Goel et al.

[9] studied two variants of knapsack problem, which can generalize maximum-element,

and come up with a 1
4
(1 − 1

e
)-approximation algorithm respecting the knapsack constraint

{S |
∑

i∈S wi ≤ W}. Later, Guha et al. [12] considered the Lagrangian version of maximum-

element, where the cost is part of objective value. They show that the Lagrangian version

can be solved optimal. Chen et al. [6] studied an online version with cardinality constraint

and obtained an online algorithm with regret bounded. They also obtained a (1 − 1
e
)-

approximation offline algorithm for cardinality constraint {S | |S| = K}.

Our results on MAXIMUM-ELEMENT: Using the truncation idea in [14, 11], we ob-

tain a constant approximation. Further we make use of the discretization technique used in

[15, 17] and obtain the first PTAS of this problem. We obtain the same constant approxima-

tion and PTAS for the minimization version of maximum-element by a slight modification

of the algorithms for maximum-element.

Theorem 1.3.7. 1. If there is a α-approximation algorithm for max-sum, there is a

α
(1+α)(1+ε)

-approximation algorithm for maximum-element for any constant ε < 0.5.

2. If there is a α-approximation algorithm for min-sum, there is a 1+α
1+ε

-approximation

algorithm for minimization version of maximum-element for any constant ε < 0.5.

3. If there is a pseudopolynomial time algorithm for exact-sum, there is a PTAS for

both maximum-element and the minimization version of maximum-element.

5

In previous work, all optimization bases on that f(S) = E[maxi∈S Xi] is a submodular

set function. Under constraints such as cardinality, knapsack, matroid, a greedy algorithm

for submodular function maximization is a (1− 1
e
)-approximation[5]. But our algorithm for

maximum-element only provides a (1
2
− ε)-approximation.

However, as we only require constant approximation for max-sum and min-sum, our

constant approximation algorithms work for more constraints. For example, consider the

cut constraint, where each variable is related to a vertex in a graph and all cuts of the graph

are feasible sets. max-cut can be approximated with ratio 0.878 [23] and min-cut can be

solved optimal [21]. Hence Theorem 1.3.7 provides constant approximation algorithms for

both maximum-element and the minimization version, while previous work can not handle

such constraint.

The best result in previous work is a constant approximation [6]. Our result is the first

PTAS for this problem. We require exact-sum to have a pseudopolynomial time algorithm.

Here we give two examples where dynamic programming admits a pseudopolynomial time

algorithm.

• Knapsack: Each variable has a weight wi and all sets with total weight at most W are

feasible sets.

• Sub-Tree: Each variable is associated to a node in a rooted tree. All sub-trees are

feasible sets.

1.3.2 MINIMUM-ELEMENT

Goel et al. [10, 9] studied minimum-element deeply. They proved the hardness of minimum-

element and proposed the Covering Interger Programs (CIP) approach for approximating

the cost in minimum-element.

Theorem 1.3.8. [9] It is NP-hard to obtain any polynomial approximation for minimum-

elementwithout violating the budget.

Theorem 1.3.9. [10] To achieve (1 + ε)-approximation on objective value, if the inputs are

6

1. distributions with upper bound M , there is a solution with cost O(log log M
V

)C where V

is a bound to OPT.

2. discrete distributions with number of supports m, there is a solution with cost at most

O(logm)C. Moreover, if the supports of variables is {0, 1, . . . ,m − 1}, the cost is at

most O(log logm)C.

3. log-concave distributions and uniform distributions, there is a solution with cost at most

O(1)C.

Our results on MINIMUM-ELEMENT: Following the previous work[10], we design

an algorithm with better CIPs. We combine CIP approach and the discretization technique.

We improve the cost to O(log log logm)C from O(log logm)C in the case where the supports

of variables is {0, 1, . . . ,m− 1}.

Theorem 1.3.10. When {Xi} is supported on {0, 1, . . . ,m− 1}, there is a polynomial time

algorithm providing a (1 + ε)-approximation with cost at most O(log log logm)C.

1.4 Structure of this Thesis

The rest of this thesis is organized as follows. Chapter 2 provides some basic mathematics

and computer science knowledge and terminologies that will be used in this thesis. We

will show our results of maximum-element in Chapter 3, part of results in this chapter

appeared in [6]. And we show the results of minimum-element in Chapter 4. Finally, we

conclude this thesis in Chapter 5.

7

8

Chapter 2

Preliminaries

2.1 Terminologies

Here we review some related terminologies which will be used in later parts of this thesis.

Distributions and Random Variables: A random variable X follows a probability dis-

tribution D is denoted by X ∼ D. The support of one distribution Supp(D) is the smallest

closed set whose complement has probability zero. If Supp(D) is a set of discrete values, we

call this distribution discrete distribution. If all values in Supp(D) is non-negative, we call

it non-negative distribution. Here are some examples of discrete distributions.

• Bernoulli Distribution: A Bernoulli distribution B(a, p) with parameters a, p takes

value a with probability p and value 0 with probability 1 − p. For simplicity, we also

use B(a, p) to denote the Bernoulli variable which follows the Bernoulli distribution

B(a, p) in this thesis.

• Poisson Distribution: A Poisson Distribution Poi(λ) with parameter λ takes value on

non-negative integers, and Pr[Poi(λ) = k] = λk

k!
e−λ.

For two distributions P and Q with Supp(P) = Supp(Q) = S, the distance L1(P,Q) is

defined by
∑

v∈S |Pr[P = v]− Pr[Q = v]|.

9

Concentration Bounds: The following concentration bounds will be useful in the thesis

(see e.g., [18])

• Markov inequality. Let X be a random variable and E[X] be its expectation. Then for

any positive α,

Pr[X ≥ α] ≤ E[X]

α
.

• Chernoff Bound. Let X1, . . . , Xn be independent random variables taking values in

{0, 1}. Let X be their sum and µ = E[X]. Then

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3

and

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2

for any 0 < δ < 1.

Matroid[4]: Matroid is an important structure widely considered in computer science.

Definition 2.1.1 (Matroid). A finite matroid M is a pair (U , I), where U is the universe

set (ground set) and I is a family of subset of U(called independent sets), with the following

properties:

• The empty set is independent;

• Any subset of independent set is independent;

• If A and B are independent sets and A has more elements than B, there exists an

element in A and adding it to B makes a larger independent set than B.

Matroid generalizes many combinatorial objects. Here are some examples for matroids.

• Uniform Matroid. Let all subsets of the ground set with size at most k be independent

sets. It is easy to check the three properties.

10

• Forest Matroid. In a graph, let the set of edges be the ground set and take all forests

in the graph be independent sets. It forms a forest matroid of a graph.

Submodular Functions: Submodular functions generalizes a number of objective func-

tions of well-known combinatorial optimization problems (see e.g., [20]).

Definition 2.1.2 (Submodular Function). A function f : 2[n] → R is called submodular, if

and only if

∀S, T ⊂ [n], f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T).

It is called monotone if ∀T ⊂ S, f(T) ≤ f(S) or ∀S ⊂ T, f(T) ≤ f(S).

Here are some examples for submodular functions.

• Linear Functions. f(S) =
∑

i∈S wi for some weights {wi}. It is easy to check that

f(S) + f(T) = f(S ∩ T) + f(S ∪ T).

• Set Cover. Let {S1, . . . , Sn} be a collection of subsets of some set G. The function

f(T) = | ∪i∈T Si| is submodular.

Approximation Ratio: To evaluate the performance of an approximation algorithm, ap-

proximation ratio is introduced. For a minimization problem, we say an algorithm achieves

approximation ratio of α ≥ 1 if

E[SOL] ≤ αOPT,

where SOL denotes the cost of the solution found by the algorithm, OPT denotes the optimal

cost and the expectation is over all randomness of the problem inputs and the algorithm itself.

Similarly, for maximization problem, we say an algorithm achieves approximation ratio of

α ≤ 1 if

E[SOL] ≥ αOPT.

A polynomial time approximation scheme (PTAS) is an algorithm which takes an instance

of a problem and a parameter ε and achieves approximation ratio 1 + ε or 1 − ε, and the

11

running time is polynomial in the size of input, for fixed ε. We say a PTAS is a fully

polynomial time approximation scheme (FPTAS) if the running time is also polynomial in

1
ε
. A pseudopolynomial time algorithm is an algorithm with running time being polynomial

in the numeric value of the inputs, which is exponential to the size of input.

Adaptivity: When designing algorithm for stochastic optimization problems, according

to when the exact value of uncertain data is revealed, there are two kinds of models.

1. Adaptive: Uncertainty is revealed immediately when one decision is made, and the

next step of the algorithm can dependent on this information. In other words, once

the algorithm take some operation oi, it can observe some uncertain data and get its

exact value vi, then make next decision according to oi, vi and all previous information.

2. Non-adaptive: Algorithms do not base their decisions on any revealed information.

All decisions are made in advance and off-line. In other words, it decides operations

o1, o2, . . . and performs operations in such order, no matter what exact value of uncer-

tain data is.

Usually adaptive algorithms perform better than non-adaptive ones. In this thesis, we only

consider the non-adaptive model.

12

Chapter 3

MAXIMUM-ELEMENT

We formulate and solve the maximum-element problem in Chapter 3. In this chapter,

we present some non-adaptive results. First, we present our constant approximation for

maximum-element. After that we show our PTAS. Finally, we try to extend our constant

approximation result to the Top-K optimization and leave a conjecture for future work.

3.1 Problem Formulation

We give the formulation of maximum-element here.

Problem 3.1.1 (maximum-element). Inputs: a set of independent non-negative random

variables {Xi}ni=1 with known distributions and a collection of feasible solutions (constraint)

F ⊂ 2[n];

Outputs: a set S ∈ F , which maximizes the value of E[maxi∈S Xi].

The minimization version of maximum-element minimizes the value E[maxi∈S Xi].

Here Xi follows a discrete distribution Di with support {ai,j}sij=1 (si = poly(n)). Let

pi,j = Pr[Xi = ai,j]. The inputs of maximum-element are {ai,j}, {pi,j} and F . Note

that F may contain exponential number of feasible sets and is represented implicitly in the

input. For example, each random variable is associated with an edge of a graph and F is the

set of all spanning trees of the graph. This is our main theorem for maximum-element.

13

Theorem 3.1.2. 1. If there is a α-approximation algorithm for max-sum, there is a

α
(1+α)(1+ε)

-approximation algorithm for maximum-element for any constant ε < 0.5.

2. If there is a α-approximation algorithm for min-sum, there is a 1+α
1+ε

-approximation

algorithm for minimization version of maximum-element for any constant ε < 0.5.

3. If there is a pseudopolynomial time algorithm for exact-sum, there is a PTAS for

both maximum-element and the minimization version of maximum-element.

3.2 Hardness

The maximum-element problem is NP-Complete. As we said in the introduction, it can be

implied by the hardness of minimum-element problem. Here we provide a separate proof,

which is clean and easy to understand.

Theorem 3.2.1. The maximum-element problem is NP-Complete for the total weight

constraint F = {S |
∑

i∈S wi ≤ 1}.

Proof. To show the NP-Completeness, we define an equivalent yes-or-no problem for maximum-

element: given a value B, is there a solution of maximum-element with value at least

B? We first show it is in NP and reduce the knapsack problem to it.

To show maximum-element is in NP, we show that given a set S, the value E[maxi∈S Xi]

can be calculated in polynomial time. Recall that each Xi follows a discrete distribution Di
with support {ai,j}sij=1 (si = poly(n)). Note that maxi∈S Xi can only take value in the set

V (S) = {ai,j | i ∈ S, j ≤ si}, which is of polynomial size. For any v ∈ V (S), we have

Pr[max
i∈S

Xi = v] = Pr[max
i∈S

Xi ≤ v]− Pr[max
i∈S

Xi < v]

=
∏
i∈S

Pr[Xi ≤ v]−
∏
i∈S

Pr[Xi < v].

The last equation follows from that all random variables are independent. So for any v ∈

V (S), Pr[maxi∈S Xi = v] can be calculated in polynomial time and E[maxi∈S Xi] can be

14

calculated in polynomial time by

E[max
i∈S

Xi] =
∑

v∈V (S)

v · Pr[max
i∈S

Xi = v].

For the reduction, consider an instance of the knapsack problem: the items have weights

{wi}ni=1 and values {vi}ni=1, the knapsack has capacity 1 and the target value is V . We

construct a set of Bernoulli variables {Xi} for maximum-element, where Xi = B(1, 1 −

e−vi). Xi has weight wi and the constraint is F = {S |
∑

i∈S wi ≤ 1}. According to our

construction, we have

E[max
i∈S

Xi] = Pr[max
i∈S

Xi = 1]

= 1− Pr[max
i∈S

Xi = 0]

= 1−
∏
i∈S

Pr[Xi = 0]

= 1−
∏
i∈S

e−vi

= 1− e−
∑
i∈S vi

Let B = 1 − e−V . maximum-element has a solution with value at least B is equivalent

to that the knapsack problem has a solution with value at least V . It is well-known that

knapsack problem is NP-Complete, hence the maximum-element problem is NP-Complete.

�

3.3 A Constant Approximation

As the maximum-element problem is NP-Complete, we consider the problem of designing a

constant approximation algorithm. The following theorems provide constant approximation

algorithms under some constraints.

Theorem 3.3.1. [6] For a set of random variables {Xi}ni=1, the function f(S) = E[maxi∈S Xi]

15

defined over subsets of [n] is monotone and submodular.

Theorem 3.3.2. [5] There are constant factor approximation algorithms for maximizing

monotone submodular functions under the following constraints:

• O(1) knapsacks [1− 1
e
− ε];

• k matroids [0.38
k

];

• l-sparse packing systems [Ω(1
l
)];

• the intersection of constant number of above constraints.

Numbers in square brackets are corresponding approximation ratios.

Different from the general approximation for submodular function maximization, we

propose a new constant approximation algorithm for maximum-element problem, which

is easier to apply and also works under other constraints.

3.3.1 Special Case: Bernoulli Distributions

We begin with a special case: all the random variables follow Bernoulli distributions, i.e.,

Xi = B(ai, pi). Before presenting the algorithm, we first define a function we will use.

Definition 3.3.3 (Truncation Function). [11] For a random variable X, define the trunca-

tion function Tr(X,T) = max{X − T, 0}.

For a set of random variables {Xi}ni=1 and a set S ⊂ [n], define Tr(S, T) =
∑

i∈S Tr(Xi, T).

The pseudocode of the algorithm can be found in Algorithm 1, where A is a polynomial

time algorithm solving max-sum with approximation ratio α ≤ 1. Algorithm 1 provides a

constant approximation if α is a constant.

Theorem 3.3.4. Algorithm 1 returns a set S with approximation ratio α
(1+α)(1+ε)

, and it

terminates in polynomial time.

16

Algorithm 1 Constant Approximation for Bernoulli Case

Require: (a1, a2, . . . , an, p1, p2, . . . , pn,F)
1: T ← max ai
2: S ← A(E[Tr(X1, T)], . . . ,E[Tr(Xn, T)],F)
3: while E[Tr(S, T)] ≤ T do
4: T ← T/(1 + ε)
5: S ← A(E[Tr(X1, T)], . . . ,E[Tr(Xn, T)],F)
6: end while
7: Return S

Proof. Before prove Theorem 3.3.4, we provide a useful lemma, which is in a similar form

of Lemma 3.3 in [14]. Compared with it, we take a stronger condition and provide a better

result.

Lemma 3.3.5. Given a fixed number T , if E[Tr(S, T)] ≥ T ,

E[max
i∈S

Xi] ≥ T. (3.1)

Proof of Lemma 3.3.5. Assume S = [N] and a1 ≥ a2 ≥ · · · ≥ aN > T . We prove that for

any given {pi}, (3.1) holds.

When N = 1, (a1 − T)p1 = E[Tr(S, T)] ≥ T ⇒ E[maxi∈S Xi] = a1p1 ≥ T (1 + p1) ≥ T .

Assume (3.1) holds for N = k.

When N = K + 1, we have

E[Tr(S, T)] ≥ T ⇔
∑
i∈S

(ai − T)pi ≥ T

⇔
∑

i∈S\{1}

(ai −Q)pi ≥ Q

where Q = T + p1(T−a1)

1+
∑N
i=2 pi

< T is a constant number independent on a2, a3, . . . , aN . Hence

ai ≥ Q for any i and
∑

i∈S\{1}(ai − Q)pi = E[Tr(S \ {1}, Q)]. By the induction hypothesis,

E[maxi∈S\{1}Xi] ≥ Q and

E[max
i∈S

Xi] = a1p1 + (1− p1)E[max
i∈S\{1}

Xi] ≥ a1p1 + (1− p1)Q ≥ T.

17

Therefore for any integer N , E[Tr(S, T)] ≥ T ⇒ E[maxi∈S Xi] ≥ T. �

With Lemma 3.3.5, now we can prove Theorem 3.3.4.

Say the while loop stopped at T0 and Algorithm 1 outputs S0. According to the descrip-

tion of Algorithm 1,

E[Tr(S0, T0)] > T0, (3.2)

and according to the definition of A,

max
S∈F

E[Tr(S, T0(1 + ε))] ≤ T0(1 + ε)/α. (3.3)

(3.2) leads to E[maxi∈S0 Xi] ≥ T0 by Lemma 3.3.5, and (3.3) implies that for any S ∈ F

E[max
i∈S

Xi] ≤ T0(1 + ε) + E[Tr(S, T0(1 + ε))] ≤ T0(1 + ε)(1 + 1/α).

Combine them to get

E[max
i∈S0

Xi] ≥ max
S∈F

E[max
i∈S

Xi]/((1 + ε)(1 + 1/α)) =
α

(1 + α)(1 + ε)
OPT.

When the while loop starts, T = max ai. When T = min ai
1+1/min pi

, for any S 6= ∅,

E[Tr(S, T)] ≥ (min ai − T) min pi ≥ T , the while loop must have terminated. Hence A

is called by at most log1+ε
(1+1/min pi) max ai

min ai
times, which is polynomial in the input size. As

A itself is a polynomial time algorithm, the total running time of Algorithm 1 is polynomi-

al. �

3.3.2 General Cases

We provide two methods to handle general cases here. The first one is decomposing a discrete

distribution to a set of Bernoulli distributions. It is a little complicated, but this trick will

be used again in the design of PTAS. The second one is applying Algorithm 1 immediately.

18

For the correctness, we will show that Lemma 3.3.5 holds for any distributions.

Method 1: For any discrete distributions, we can rewrite it as the maximum of a set of

Bernoulli distributions.

Definition 3.3.6. For a discrete distribution X with supports 0 = a0 < a1 ≤ a2 ≤ · · · ≤ al

and Pr[X = aj] = pj, we define a set of independent Bernoulli variables {Zj}lj=1 as

Zj = B(aj,
pj∑
j′≤j pj′

).

We call {Zj} the Bernoulli decomposition of X.

Lemma 3.3.7. For a discrete distribution X and its Bernoulli decomposition {Zj}, maxj{Zj}

has the same distribution with X.

Proof. It follows an easy computing.

Pr[max{Zj} = ai] = Pr[Zi = ai]
∏
h>i

Pr[Zh = 0]

=
pi∑
i′<i pi′

∏
h>i

(1− ph∑
h′≤h ph′

)

=
pi∑
i′<i pi′

∏
h>i

∑
h′≤h−1 ph′∑
h′≤h ph′

= pi.

Hence ∀i ≤ l, Pr[max{Zj} = ai] = Pr[X = ai]. �

With Lemma 3.3.7, for any set S, we know that maxi∈S Xi and maxi∈S,j Zi,j have the

same distribution. As all Zi,j are independent Bernoulli variables, we can apply an algorithm

similar to Algorithm 1 on {Zi,j} and obtain a constant approximation. The pseudocode can

be found in Algorithm 2.

Theorem 3.3.8. For any set of non-negative discrete distributions, if there is an α-approximation

for max-sum, there is an α
(1+α)(1+ε)

-approximation for maximum-element.

19

Algorithm 2 Constant Approximation for maximum-element

Require: (X1, X2, . . . , Xn,F)
1: For each Xi compute the Bernoulli decomposition {Zi,j}j of Xi

2: T ← max ai,j
3: S ← A(

∑
j E[Tr(Z1,j, T)], . . . ,

∑
j E[Tr(Zn,j, T)],F)

4: while E[
∑

i∈S,j Tr(Zi,j, T)] ≤ T do
5: T ← T/(1 + ε)
6: S ← A(

∑
j E[Tr(Z1,j, T)], . . . ,

∑
j E[Tr(Zn,j, T)],F)

7: end while
8: Return S

Proof. Take the same notations as in the proof of Theorem 3.3.4. Similar to (3.2) and (3.3),

we have

E[
∑
i∈S0,j

Tr(Zi,j, T0)] ≤ T0, (3.4)

and

max
S∈F

∑
i∈S

∑
j

E[Tr(Zi,j, T0(1 + ε))] ≤ T0(1 + ε)/α. (3.5)

(3.4) and (3.5) imply that

E[max
i∈S0,j

Zi,j] ≥
α

(1 + α)(1 + ε)
max
S∈F

E[max
i∈S,j

Zi,j]. (3.6)

By Lemma 3.3.7, we have for any S

max
i∈S

Xi = max
i∈S,j

Zi,j. (3.7)

Put (3.7) into (3.6) and we complete the proof. �

Method 2: As we said, we show a stronger version of Lemma 3.3.5.

20

Lemma 3.3.9. For any set of discrete distributions {Xi}ni=1, if
∑

i E[Tr(Xi, T)] ≥ T ,

E[max
i
Xi] ≥ T.

Proof. Assume Supp(Xi) = {ai,j}sij=0 with 0 = ai,0 < T < ai,1 ≤ ai,2 ≤ . . . ≤ ai,si . Denote

pi,j = Pr[Xi = ai,j]. For each Xi, we create a Bernoulli variable Yi = B(ui, qi) with ui =∑
j>0 ai,jpi,j∑
j>0 pi,j

and qi =
∑

j>0 pi,j. It is easy to check that

∑
i

E[Tr(Yi, T)] =
∑
i

E[Tr(Xi, T)] ≥ T.

By Lemma 3.3.5, we have E[maxi Yi] ≥ T . Now we prove that

E[max
i
Xi] ≥ E[max

i
Yi]. (3.8)

If n = 1, E[X1] = E[Y1], (3.8) holds.

Assume (3.8) holds for n = k. When n = k + 1, assume u1 is the largest among all uis.

On one hand,

E[max
i
Yi] = u1q1 + (1− q1)E[max

i>1
Yi]

≤ u1q1 + (1− q1)E[max
i>1

Xi]

= E[X1] + Pr[X1 = 0]E[max
i>1

Xi].

The first inequality follows from the induction hypothesis, and the last equality follows from

the definition of u1, q1. On the other hand,

E[max
i
Xi] = Pr[X1 = 0]E[max

i>1
Xi] + Pr[X1 > 0]E[max

i
Xi | X1 > 0]

≥ Pr[X1 = 0]E[max
i>1

Xi] + Pr[X1 > 0]E[X1 | X1 > 0]

= Pr[X1 = 0]E[max
i>1

Xi] + E[X1].

21

Hence we have E[maxiXi] ≥ Pr[X1 = 0]E[maxi>1Xi] +E[X1] ≥ E[maxi Yi], which completes

the proof. �

Using Lemma 3.3.9 instead of Lemma 3.3.5, we know that the approximation guarantee

of Algorithm 1 holds for any discrete distributions.

3.4 PTAS

Now we provide a PTAS for maximum-element, taking F = {S | |S| = K} as example.

In other words, given a constant ε ∈ (0, 0.5), we give an algorithm which finds a solution

S ∈ F and E[maxi∈S Xi] ≥ (1− ε)OPT.

We first provide an overview of our approach and explain details later.

• (Discretization) We first run a constant approximation algorithm to obtain an esti-

mation of OPT, and transform each Xi to another distribution X̄i according to the

estimation, such that all X̄is are supported on a set of size O(1/ε2);

• (Computing signatures) For each Xi, we can compute a signature Sg(Xi), which is a

vector of size O(1/ε2), using X̄i. For any set S, we also define a signature Sg(S) =∑
i∈S Sg(Xi). We will show that two sets with the same signature must have close

objective values.

• (Enumeration) We enumerate all possible signatures which is polynomial and enumer-

able. For each signature, try to find one set with this signature and its cardinality

being K. Finally output the found set with the maximum objective value.

3.4.1 Discretization

We first explain details in discretization. The pseudocode for discretization can be found in

Algorithm 3.

We run Algorithm 1 to obtain a solution SG and denote W = E[maxi∈SG Xi]. When

F = {S | |S| = K}, max-sum can be solved with α = 1 and by Theorem 3.3.8 W ≥ cOPT

22

Algorithm 3 Discretization

1: We first run Algorithm 1 to obtain a solution SG and let W = E[maxi∈SG Xi].
2: for i = 1 to n do
3: Compute the Bernoulli decomposition {Zi,j}j of Xi.
4: for all Zi,j do
5: Create another Bernoulli variable Z̄i,j as follows:
6: if ai,j > W/ε then
7: Let Z̄i,j ∼ B

(
W
ε
,E[Zi,j]

ε
W

)
; (Case 1)

8: else
9: Let Z̄i,j = bZi,j

εW
cεW; (Case 2)

10: end if
11: end for
12: Let X̄i = maxj{Z̄ij};
13: end for

with c = 1
2(1+ε)

. We first compute the Bernoulli decomposition {Zi,j} of Xi. For each Zi,j we

create Z̄i,j for it as follows: We distinguish two cases according to ai,j, the nonzero possible

value of Zi,j:

• Case 1: ai,j > W/ε, we let Z̄i,j = B(W/ε,E[Zi,j]ε/W);

• Case 2: ai,j ≤ W/ε, we let Z̄i,j = bZi,j
εW
cεW.

Finally, we let X̄i = maxj Z̄i,j, which is the discretization of Xi. Note that all Z̄i,js are sup-

ported on Supp = {0, εW, 2εW, . . . ,W/ε}, and so X̄i is also a discrete distribution supported

on Supp. We can easily compute Pr[X̄i = s] for any s ∈ Supp.

We show that our discretization only include a small loss in the objective value. The key

is to show that we don’t lose much in the transform from Z to Z̄, which is the only one step

producing difference.

Lemma 3.4.1. Consider any set of Bernoulli variables {Zi = B(ai, pi)}mi=1. Assume that

E[maxi∈[m]] < cW, where c is a constant such that cε < 1/2. For each Zi we create Z̄i in the

same way as Algorithm 3. The following holds:

E[maxZi] ≥ E[max Z̄i] ≥ E[maxZi]− (2c2 + 1)εW. (3.9)

23

Proof. Assume a1 is the largest among ais.

If a1 ≤ W/ε, all transformation is in Case 2. In this case, it is obvious to have

E[maxZi] ≥ E[max Z̄i] ≥ E[maxZi]− εW ≥ E[maxZi]− (2c+ 1)εW.

If a1 > W/ε, we do induction on m. Let L = {i|ai > W/ε}. We prove the following claim:

E[maxZi] ≥ E[max Z̄i] ≥ E[maxZi]− εW − cε
∑
i∈L

aipi. (3.10)

When m = 1, (3.10) holds immediately as E[Z1] = E[Z̄1] in Case 1.

Assume (3.10) holds form = k, we show it holds form = k+1. As Z̄1 = B(W/ε,E[Z1]ε/W),

we have:

E[max
i≥1

Zi]− E[max
i≥1

Z̄i] = a1p1 + (1− p1)E[max
i≥2

Zi]− a1p1 − (1− E[Z1]ε/W)E[max
i≥2

Z̄i]

≥ (1− p1)E[max
i≥2

Z̄i]− (1− E[Z1]ε/W)E[max
i≥2

Z̄i]

= (εa1/W − 1)p1E[max
i≥2

Z̄i] ≥ 0

where the first inequality follows from induction hypothesis and the last comes from a1 >

W/ε. The second inequality in 3.10 can be seen as follows:

E[max
i≥1

Z̄i]− E[max
i≥1

Zi] = a1p1 + (1− E[Z1]ε/W)E[max
i≥2

Z̄i]− a1p1 − (1− p1)E[max
i≥2

Zi]

≥ (p1 − E[Z1]ε/W)E[max
i≥2

Zi]− εW − cε
∑

i∈L\{1}

aipi

≥ −εW − cε
∑
i∈L

aipi,

where the first inequality follows from induction hypothesis and the last comes from p1 ≥ 0

and E[maxi≥2] ≤ cW. Proof of 3.10 finishes.

24

Finally, we show
∑

i∈L aipi ≤ 2cW. According to Markov inequality, we have

Pr[maxZi ≥ W/ε] ≤ cε,

which is equivalent to ∏
i∈L

(1− pi) ≥ 1− ε.

Then we can see that

cW ≥ E[max
i∈L

Zi] =
∑
i∈L

aipi
∏
j<i

(1− pj) ≥ (1− cε)
∑
i∈L

aipi ≥
∑
i∈L

aipi/2.

Plugging this into (3.10), we prove the lemma. �

Corollary 3.4.2. For any set S, suppose that E[maxi∈S Xi] < cW where c is a constant such

that cε < 1/2, we create X̄i as in Algorithm 3, and the following holds:

E[maxi∈SXi] ≥ E[max
i∈S

X̄i] ≥ E[max
i∈S

Xi]− (2c2 + 1)εW.

3.4.2 Signatures

For each Xi, we have created its discretization X̄i. Since X̄i is a discrete distribution, we

compute its Bernoulli decomposition {Yi,j}hj=1 where h = |Supp|. Note that since {Xi}

and {X̄i} have different supports, {Yi,j} is different from {Z̄i,j} which is defined in the

discretization step. Suppose Yi,j = B(jW/ε, qi,j). We define the signature of Xi to be

Sg(Xi) = (b− log(1− qi,1)

ε4/n
cε4/n, · · · , b− log(1− qi,h)

ε4/n
cε4/n). (3.11)

And for any set S we define its signature to be

Sg(S) =
∑
i∈S

Sg(Xi).

25

Define the set of signature vectors SG to be all h-dimensional vectors with each coordinate

being an integer multiples of ε4/n and at most log(h/ε2).

For any signature vector sg, we associate a set of random variables {Bk = B(kεW, 1 −

e−sgk)}hk=1 to it. It is easy to see that the signature of maxBk is exactly sg. And we define

the value of sg to be Val(sg) = E[maxBk].

Lemma 3.4.3. Consider two sets S1 and S2. If Sg(S1) = Sg(S2), the following holds:

|E[max
i∈S1

X̄i]− E[max
i∈S2

X̄i]| ≤ O(ε)W.

Proof. Suppose {Yi,j}hj=1 is the Bernoulli decomposition of X̄i. For any set S, define Yk(S) =

maxi∈S Yi,k. It is easy to see that Yk(S) is a Bernoulli variable B(kεW, pk(S)) with pk(S) =

1−
∏

i∈S(1− qi,k). As Sg(S1) = Sg(S2), we have

|pk(S1)− pk(S2)| ≤ 2ε4 ∀k ∈ [h].

Note that maxi∈S X̄i = maxk Yk(S), we have

|E[max
i∈S1

X̄i]− E[max
i∈S2

X̄i]| = |E[max
k
Yk(S1)]− E[max

k
Yk(S2)]|

≤ W/ε(
∑
k

|pk(S1)− pk(S2)|)

≤ 4hε3W = O(ε)W

where the first inequality follows from the following lemma.

Lemma 3.4.4. [6] Let P = P1×P2× · · ·×Pn and Q = Q1× · · ·×Qn be two disctributions,

then we have

L1(P,Q) ≤
∑

L1(Pi, Qi).

�

Corollary 3.4.5. For any feasible set S with Sg(S) = sg, |E[maxi∈S X̄i]−Val(sg)| ≤ O(ε)W.

26

Combined with Corollary 3.4.2, we have that |E[maxi∈S Xi]− Val(sg)| ≤ O(ε)W.

As we only consider signatures whose coordinates are all at most log h/ε2, the number

of different signatures is O((n log h
ε2
/ε4)h−1), which is polynomial. And for any signature sg

with coordinates larger than log(h/ε2), consider the signature sg′ with those large coordinates

decreased to exact log(h/ε2). It is easy to show that |Val(sg) − Val(sg′)| ≤ εW and by

Corollary 3.4.5, we lose at most O(ε)W by ignoring those signatures.

3.4.3 Enumerating Signatures

Our algorithm enumerates all signature vectors sg in SG. For each sg, we check if we can

find a set S of size K such that Sg(S) = sg.

Take the cardinality constraint as example, this can be done by a standard dynamic

program in Õ(mO(1/ε2)) time as follows: We use Boolean variable R[i][j][sg′] to represent

whether signature vector sg′ ∈ SG can be dominated by i variables in set {X1, . . . , Xj}. The

dynamic programming recursion is

R[i][j][sg′] = R[i][j − 1][sg′] ∧R[i− 1][j − 1][sg′ − Sg(Xj)].

If the answer is yes (i.e., we can find such S), we say sg is a feasible signature vector and

S is a candidate set.

For a general constraint, as each coordinate of one signature is an integer multiple of

ε4/n with upper-bound log(h/ε2), we can encode each signature to an integer with upper-

bound O((n log h
ε2
/ε4)h−1). Thus finding a corresponding feasible set reduced to a exact-

sumproblem, and if there is one pseudo-polynomial algorithm for exact-sum, we can find

a feasible set in polynomial time.

Finally, we pick the candidate set with maximum E[maxi∈S Xi] and output the set. The

pseudocode can be found in Algorithm 4.

Now we are ready to prove Theorem 3.4.6 by showing that Algorithm 4 is a PTAS for

maximum-element.

27

Algorithm 4 PTAS for maximum-element

1: Run Algorithm 3 to obtain random variables {X̄i};
2: Compute Bernoulli decomposition {Yi,j}h1 for each X̄i;
3: Compute signatures of {Xi} according to (3.11);
4: U ← ∅
5: for all signature vector sg ∈ SG do
6: Find a set S such that |S| = K and Sg(S) = sg;
7: if E[maxi∈S Xi] > E[maxi∈U Xi] then
8: U ← S.
9: end if
10: end for
11: Return U

Theorem 3.4.6. Algorithm 4 is a PTAS for maximum-element, if there is a pseudopoly-

nomial time algorithm for exact-sum.

Proof. Suppose S∗ is the optimal solution and sg∗ is the signature of S∗. By Corollary 3.4.5,

we have that |OPT− Val(sg∗)| ≤ O(ε)W.

When Algorithm 4 is enumerating sg∗, it can find a set S such that Sg(S) = sg∗ (there

exists at least one such set since S∗ is one). Therefore, we can see that

|E[max
i∈S

Xi]− E[max
i∈S∗

Xi]| ≤ |Val(sg∗)− E[max
i∈S

Xi]|+ |Val(sg∗)− E[max
i∈S∗

Xi]| ≤ O(ε)W.

Let U be the output of Algorithm 4. Since W ≥ cOPT, we have E[maxi∈U Xi] ≥ E[maxi∈S Xi] ≥

(1−O(ε))OPT.

If there is a pseudopolynomial time algorithm for exact-sum, the running time of the

algorithm is polynomial for a fixed constant ε > 0. Hence, we have a PTAS problem. �

3.5 Minimization version of maximum-element

In this part we consider the minimization version of maximum-element. For the constant

approximation, we propose a similar algorithm with Algorithm 1, whose pseudocode can be

found in Algorithm 5, where A is an α-approximation for min-sum problem.

28

Algorithm 5 Constant Approximation for Minimization

Require: (a1, a2, . . . , an, p1, p2, . . . , pn,F)
1: T ← min ai min pi/(α + min pi)
2: S ← A(E[Tr(X1, T)], . . . ,E[Tr(Xn, T)],F)
3: while E[Tr(S, T)] ≥ αT do
4: T ← T (1 + ε)
5: S ← A(E[Tr(X1, T)], . . . ,E[Tr(Xn, T)],F)
6: end while
7: Return S

Theorem 3.5.1. Algorithm 5 returns an output with approximation ratio 1+α
1+ε

in polynomial

time.

The proof of Theorem 3.5.1 is almost the same as the proof of Theorem 3.3.4, and we

skip it here.

For the PTAS approach, we still use the same discretization and signature as in solving

maximum-element. Obviously, the constant approximation can be obtained by Algorith-

m 5 instead of Algorithm 1. Though the second inequality of (3.9) no longer holds as

condition E[maxi∈S Zi] ≤ cW no longer holds for any constant c, we show the following

lemma which is enough for the minimization version.

Lemma 3.5.2. For any set of Bernoulli variables {Zi} with E[Zi] ≤ W and E[maxZi] >

W/3ε, the following holds:

E[max Z̄i] ≥ CW/3ε− εW,

where (1− C/3)(1− C) = C.

Proof. Define S1 = {i|ai > W/ε} and S2 = {i|ai ≤ W/ε}.

If E[maxi∈S2 Zi] ≥ CW/3ε, we have

E[max
i∈S

Z̄i] ≥ E[max
i∈S2

Z̄i] ≥ CW/3ε− εW.

If E[maxi∈S2 Zi] < CW/3ε, we have

E[max
i∈S1

Zi] ≥ E[max
i∈S

Zi]− E[max
i∈S2

Zi] ≥ (1− C)W/3ε.

29

Therefore we take T = CW/3ε and have

∑
i∈S1

E[Tr(Z̄i, T)] =
∑
i∈S1

(W/ε− T)aipiε/W

=
∑
i∈S1

(1− C/3)aipi

≥ (1− C/3)E[max
i∈S1

Zi]

≥ (1− C/3)(1− C)W/3ε

= CW/3ε = T.

By Lemma 3.3.5, we have E[maxi∈S1 Z̄i] ≥ T and so

E[max
i∈S

Z̄i] ≥ E[max
i∈S1

Z̄i] ≥ T ≥ CW/3ε− εW.

�

Corollary 3.5.3. For any set S, suppose that E[maxi∈S Xi] ≥ W/3ε, the following holds:

E[max
i∈S

Z̄i] ≥ CW/3ε− εW,

where (1− C/3)(1− C) = C.

With Corollary 3.4.2 and Corollary 3.5.3, we are now ready to prove our PTAS result.

Theorem 3.5.4. The optimal solution with set {X̄i} is a (1 + O(ε))-approximation to the

optimal solution with set {Xi}. So Algorithm 6 is a PTAS for minimization version of

maximum-element, if there is a pseudopolynomial time algorithm for exact-sum.

Proof. Assume the optimal solution for {Xi} is S and the optimal solution for {X̄i} is S̄.

As S̄ is optimal for {X̄i}, we have

E[max
i∈S̄

X̄i] ≤ E[max
i∈S

X̄i] ≤ E[max
i∈S

Xi] = OPT, (3.12)

30

Algorithm 6 PTAS for Minimization

1: Run Algorithm 3 with Algorithm 5 instead of Algorithm 1 to obtain {X̄i};
2: Compute signatures according to (3.11);
3: U ← ∅;
4: for all signature vector sg ∈ SG do
5: Find a set S such that |S| = K and Sg(S) = sg;
6: if E[maxi∈S Xi] < E[maxi∈U Xi] then
7: U ← S.
8: end if
9: end for
10: Return U

the last inequality follows from Corollary 3.4.2. On the other hand, say E[maxi∈S̄ Xi] = kW.

If k > 1/3ε, by Corollary 3.5.3, E[maxi∈S̄] ≥ CW/3ε− εW. Recall that W is an constant

approximation to the optimal solution, and this contradicts to 3.12.

If k ≤ 1/3ε, as kε < 1/2, we apply Corollary 3 and obtain

E[max
i∈S̄

X̄i] ≥ kW − (2k2 + 1)εW. (3.13)

Combine 3.13 and 3.12 we have [k − (2k2 + 1)ε]W ≤ OPT. Solve it and get the solution

kW ≤ (1 + O(ε))OPT (ignore the other solution of this inequality which implies k > 1/3ε).

This finishes the proof of the first part of this theorem.

Almost same as the proof for Theorem 3.4.6, it is obvious that Algorithm 6 finds a

solution S̃ such that E[maxi∈S̃ Xi] ≤ (1 + O(ε))E[maxi∈S̄ Xi]. And by the first part of this

theorem, we have that E[maxi∈S̃ Xi] ≤ (1 +O(ε))E[maxi∈S Xi]. �

3.6 MAXK

In many applications, people consider the K-th largest value instead of the largest. For

example, in the second price auction, the final price of an item is the second largest bid. For

this purpose, we define the MAXK function and the MAXK problem.

Definition 3.6.1. Given a set of real numbers {vi}ni=1, an integer K ≥ 1, and set S ⊂ [n],

31

define

MAXK(S) = the K-th largest value in set {vi | i ∈ S}.

Problem 3.6.2 (MAXK). Inputs: a set of non-negative distributions {Xi}ni=1, an integer

K ≥ 1, and a constraint F ⊂ 2[n];

Outputs: a set S ∈ F , which maximizes the value E[MAXK(S)].

If |S| = K, it is obvious that MAXK(S) = mini∈S vi. So for a general K and constraint

F = {S | |S| = K}, the MAXK problem can be as difficult as the minimum-element

problem. As we will show in Chapter 4, it is impossible to approximate to any polynomial

approximation ratio. To extend our result to MAXK problem, we try to bound the top

function by the maximum of a set of independent random variables. We prove the following

upper-bound lemma and leave the other side as a conjecture.

Lemma 3.6.3. Consider a set of Bernoulli variables {Xi,j}ni,j=1. For any i, Xi,1, Xi,2, . . . , Xi,n

are identically independent distributions. The following holds:

Pr[max
i<j

min(Xi,j, Xj,i) = 1] ≥ Pr[max
i<j

min(Xi,i, Xj,j) = 1]. (3.14)

Conjecture: The following holds for some constant C:

Pr[max
i<j

min(Xi,i, Xj,j) = 1] ≤ C Pr[max
i<j

min(Xi,j, Xj,i) = 1].

proof sketch. To prove inequality 3.14, we can prove a more general inequality:

Pr[max
(i,j)∈S

min(Xi,j, Xj,i) = 1] ≥ Pr[max
(i,j)∈S

min(Xi,i, Xj,j) = 1], (3.15)

where S is any set of pairs.

To prove this, do inductions on the size of S. When adding a pair (s, t) to S, if there is

32

no s or t appearing in S, the induction is obviously easy. If s or t appears in S, we have

Pr[max
(i,j)∈S∪{(s,t)}

min(Xi,j, Xj,i) = 1]

= Pr[min(Xs,t, Xt,s) = 1] + Pr[min(Xs,t, Xt,s) = 0] Pr[max
(i,j)∈S

min(Xi,j, Xj,i) = 1 | min(Xs,t, Xt,s) = 0]

= Pr[min(Xs,s, Xt,t) = 1] + Pr[min(Xs,s, Xt,t) = 0] Pr[max
(i,j)∈S

min(Xi,j, Xj,i) = 1 | min(Xs,t, Xt,s) = 0]

By carefully analyzing the conditional probability, we can have

[max
(i,j)∈S

min(Xi,j, Xj,i) = 1 | min(Xs,t, Xt,s) = 0]

≥Pr[max
(i,j)∈S

min(Xi,i, Xj,j) = 1 | min(Xs,s, Xt,t) = 0].

Combine them and we have proved 3.15. Lemma 3.6.3 is a special case for S = {(i, j) | i <

j}. �

Theorem 3.6.4. Based on Conjecture 3.6.3, there is a constant approximation for MAX2

problem.

Proof. W.l.o.g., assume all input distributions are supported on integers. Hence we have

E[MAX2(S)] = E[max
i<j

min(Xi, Xj)] =
∑
t≥2

Pr[max
i<j

min(Xi, Xj) ≥ t].

For Xi, we create a set of random variables {Xi,j}nj=1, identically independent and follow-

ing the same distribution of Xi. And for Xi and an integer t, we create a set of random

variables {Y t
i,j}nj=1. They are identically independent and follow the Bernoulli distribution

B(1,Pr[Xi ≥ t]). It is easy to see that Pr[maxi<j min(Xi, Xj) ≥ t] = Pr[maxi<j min(Y t
i,i, Y

t
j,j) =

1]. Apply Conjecture 3.6.3 to {Y t
i,j} we have

Pr[max
i<j

min(Y t
i,j, Y

t
j,i) = 1] ≥ Pr[max

i<j
min(Y t

i,i, Y
t
j,j) = 1] ≤ C Pr[max

i<j
min(Y t

i,j, Y
t
j,i) = 1].

33

Take summation over all ts we have

E[max
i<j

min(Xi,j, Xj,i)] ≥ E[MAX2(S)] ≥ CE[max
i<j

min(Xi,j, Xj,i)],

which means that E[MAX2(S)] is constant bounded by E[maxi<j min(Xi,j, Xj,i)]. Note that

{min(Xi,j, Xj,i)}i<j is a set of independent random variables, and by Theorem 3.3.4, Algo-

rithm 1 provides a constant approximation, which is also a constant approximation to MAX2

problem. �

The running time is a big problem of Theorem 3.6.4. Applying Algorithm 1 to {min(Xi,j, Xj,i)}i<j,

the constraint is ‘squared’. For example, the simplest cardinality constraint, finding a max-

imum set with size k becomes finding a maximum clique with size k in a weighted complete

graph. This ‘square’ fact makes us hard to find a natural constraint under which Theo-

rem 3.6.4 provides a polynomial time result.

34

Chapter 4

MINIMUM-ELEMENT

We formulate minimum-element in Chapter 4. We first review the previous technique and

present how we combine it and the discretization technique to obtain a better approximation

ratio.

4.1 Problem Formulation

We give the formulation of minimum-element here.

Problem 4.1.1 (minimum-element). Inputs: a set of independent non-negative random

variables {Xi}ni=1, costs {ci}, and a budget C;

Outputs: a set S with total cost at most C, which minimizes the value E[mini∈S Xi].

Here Xi follows the discrete distribution Di with support {vi,j}sij=1 (si = poly(n)). Let

pi,j = Pr[Xi = vi,j]. The inputs of minimum-elementare {vi,j}, {pi,j}, {ci} and C.

4.2 Hardness

Goel et al. [10] first considered the minimum-element problem and proved its hardness.

Theorem 4.2.1. [10] It is NP-hard to obtain any polynomial approximation for minimum-

elementwhile preserve the budget, even when all variables share the same cost.

35

As it is hard to approximate while preserving the budget, Goel et al. changed the target

to minimizing the cost while the objective value is at most (1 + ε)OPT. The following

Theorem 4.2.2 and Theorem 4.2.3 are the foundations of their approach. All we need to do

is to find a good initial solution and apply Theorem 4.2.3.

Theorem 4.2.2. [10] Denote f(S) = E[mini∈S Xi], then − log f is a sub-modular function.

Theorem 4.2.3. [20] Given a non-decreasing submodular function f on set U , where each

element has a cost, and a budget C. Let S∗ = argmax{f(S) |
∑

i∈S ci ≤ C}. With an initial

set S, the greedy algorithm using extra cost at most C log f(S∗)−f(S)
ε

finds a set T such that

f(S∗)− f(T) ≤ ε.

4.3 CIP Approach

Here we first review the technique used in [10]. Based on their approach we improve their

result in the case where all distributions are supported on {0, 1, . . . ,m− 1}. The key idea of

this approach is to design proper Covering Integer Programs and solve them approximately.

Consider the supports of {Xi}ni=1 are 0 = a0 ≤ a1 ≤ a2 ≤ . . . ≤ am. Let lj = aj+1 − aj.

Recall that pij = Pr[Xi = aj] and let qi,j = − log pi,j. There are two CIPs in their approach:

The first one is

min .z

s.t.
∑
i

ai,jyi ≥ log lj − z j = 1, 2, . . . ,m

∑
i

ciyi ≤ C (4.1)

yi ∈ {0, 1} i = 1, 2, . . . , n.

CIP(4.1) provides a bound for the optimal value when preserve the cost. Assume z∗ is the

36

optimal solution of the first CIP, and the second one is

min
∑
i

ciyi

s.t.
∑

ai,jyi ≥ log lj − z∗ j = 1, 2, . . . ,m (4.2)

yi ∈ {0, 1} i = 1, 2, . . . , n.

CIP(4.2) provides a solution with least cost whose objective value is polynomial bounded by

z∗.

In [10] Goel et al. proved the following result by solving these two CIP approximately.

Theorem 4.3.1. [10] If all Xis are supported on m values, there is an algorithm providing a

solution for minimum-element with cost at most O(logm)C and the objective value at most

mOPT. Applying Theorem 4.2.3, there is an algorithm achieves a O(logm) approximation

on cost with objective value at most (1 + ε)OPT.

When {Xi} are supported on {0, 1, . . . ,m − 1}, we can simply contract intervals and

create a set of random variables supported on {0, 1, 2, 4, . . . , 2logm} to approximate and the

loss ratio to objective value is at most 2. Hence applying Theorem 4.3.1 in this set leads to

Corollary 4.3.2.

Corollary 4.3.2. [10] When Xis are supported on {0, 1, . . . ,m − 1}, there is an algorithm

achieves an O(log logm) approximation on the cost with objective value being at most (1 +

ε)OPT.

4.4 Our CIP Approach

We consider the special case where {Xi} are supported on [0,m−1]. We propose an algorithm

to find a (c, O(log log logm))-approximation with some constant c and apply Theorem 4.2.3

to obtain the final solution. Here is our main theorem for minimum-element.

37

Theorem 4.4.1. When all Xis are supported on {0, 1, . . . ,m − 1}, there is a polynomial

time algorithm providing a (1 + ε)-approximation with cost at most O(log log logm)C.

We provide an overview of our algorithm here and explain details later.

• Enumerate all possible objective value W;

• For each W, define a set of possible signatures and enumerate all possible signatures;

• For each signature, solve a corresponding integer programming and find a candidate

set;

• Choose a good set among all candidate sets.

As E[mini∈S Xi] must fall in the interval [min Pr[Xi 6= 0],m− 1]. We assume the optimal

value being {b, 2b, 4b, 8b, . . . , 2Nb} with lb = min Pr[Xi 6= 0] and N = log2
m−1
b

. Hence we

can enumerate it.

For a guessing W, we need to enumerate signatures. To define signatures, we first intro-

duce a lemma.

Lemma 4.4.2. Denote pij = Pr[Xi ≥ 2j], j = 0, 1, . . . , logm. Then the following holds:

E[min
i∈S

Xi] ≤
logm∑
j=0

2j
∏
i∈S

pi,j ≤ 2E[min
i∈S

Xi].

Proof. Since {Xi} are supported on [0,m− 1], we have

E[min
i∈S

Xi] =
m−1∑
k=1

Pr[min
i∈S

Xi ≥ k]

=

logm∑
j=0

(
2j+1−1∑
k=2j

Pr[min
i∈S

Xi ≥ k])

≤
logm∑
j=0

2j Pr[min
i∈S

Xi ≥ 2j]

=

logm∑
j=0

2j
∏
i∈S

pi,j

38

Similarly, we have

E[min
i∈S

Xi] ≥
logm∑
j=0

2j
∏
i∈S

pi,j/2.

�

By Lemma 4.4.2, we use
∑

2j
∏

i∈S pi,j to approximate E[mini∈S Xi]. Now we define

the signature of set S to be Sg(S) = (z0, z1, . . . , zlogm) with zj = b−
∑

log2 pi,jc. Define

Val(sg) =
∑

j 2j−zj . It is obvious that z0 ≤ z1 ≤ · · · ≤ zlogm. The set of all possible

signatures SG are monotone logm-dimensional integer vectors with each coordinate at most

log m
εW

. Here are two useful facts about the signature.

Lemma 4.4.3. For any set S,

1

4
Val(Sg(S)) ≤ E[min

i∈S
Xi] ≤ Val(Sg(S))

Proof. Let Sg(S) = (z0, . . . , zlogm). Recall that zj = b−
∑

i∈S log2 pi,jc. Hence

zj ≤ −
∑

log2 pi,j ≤ zj + 1.

This simply implies

∑
2j
∏
i∈S

pi,j ≤ Val(Sg(S)) ≤ 2
∑

2j
∏
i∈S

pi,j.

Combine with Lemma 4.4.2 we finish the proof. �

Lemma 4.4.4. Any coordinate of guessing value W is at least log 1
W
− 2. By only consider

the signature set SG, the difference to optimal objective value is at most O(ε)W.

Proof. Since we guess the objective value is W, by Lemma 4.4.3, Val(Sg(S)) ≤ 4W, which

implies for any j, 2j−zj ≤ 4W. By a simple calculation we get zj ≥ log 1
W
− 2.

On the other hand, for any signature sg = (z0, . . . , zlogm) with z0 ≤ z1 ≤ · · · ≤ zl ≤

log m
εW

< zl+1 ≤ · · · ≤ zlogm, we compare it with sg′ = (z0, . . . , zl, log m
εW
, . . . , log m

εW
). It is

39

obvious that Val(sg) ≤ Val(sg′). And

Val(sg′)− Val(sg) =

logm∑
i=l+1

(2i−log m
εW − 2i−zi) (4.3)

≤
logm∑
i=l+1

2i
εW

m
(4.4)

≤ 2εW. (4.5)

Therefore for any signature sg not in the set SG, there is a signature sg′ ∈ SG satisfying

Val(sg) ≤ Val(sg′) ≤ Val(sg) + 2εW. �

Each signature is a logm-dimensional monotone integer vector with coordinates in the

range [log 1
W
− 2, log m

εW
]. Hence

|SG| =
(

log m
εW
− log 1

W
+ 2 + logm

logm

)
= O(m2/ε)

and we can enumerate it. When getting the possible signature z = (z0, . . . , zlogm), let

ai,j = − log2 pi,j and we define the following IP:

min .
∑
i

cixi

s.t.
∑
i

ai,jxi ≥ zj j = 0, . . . , logm. (4.6)

xi ∈ {0, 1} i = 1, . . . , n.

The meaning of variables and constraints in this IP is immediate:

• xi represents the choice of Xi. xi = 1 if and only if i ∈ S.

• Each constraint bounds a coordinate of Sg(S) by zj, and bound the value Val(Sg(S)) ≤

Val(sg).

To solve IP(4.6) approximately, we propose the following theorem.

40

Theorem 4.4.5. Given δ > 0 and a column monotone IP

min .
n∑
i=0

cixi

Ax ≥ b

x ∈ {0, 1}n.

where b is a positive integer vector and max bi
min bi

≤ T . If there is a fractional solution x∗

satisfying x∗ ∈ [0, θ]n where θ = 1
2(1+log 1/δ)

, there is an algorithm to find a integer solution x

with probability 1− 2δ such that

∑
i

cixi ≤ O(log log T)OPT,

where the constant in O notation depends on δ, and

Ax ≥ b.

Proof. We round each x∗i to 1 with probability
x∗i
θ

, and 0 otherwise. We repeat rounding by

l = log t

log 1
δ

+ 1 turns, and set xi = 1 if it is round to 1 in any round. To show its correctness,

we define some things first.

We define some sets S1, . . . , St according to b: Si = {k | bk ∈ (Ci−1 min bi, C
i min bi]}.

Here C =
1−

√
log 1

δ
1+log 1

δ

θ
and t = logC T . We also define a series of events Ω1, . . . ,Ωt: Ωi = {∀k ∈

Si,
∑

j aj,kxj ≥ bk}.

In one round, for any k ∈ Si, E[
∑

j aj,kxj] =
∑

j aj,k
x∗

θ
≥ Ci−1

θ
. As Cθ < 1 and by

Chernoff bound we have

Pr[
∑
j

aj,kxj < Ci] ≤ e−
1−Cθ
2θ = δ.

41

Pr[Ωi] = Pr[∀k ∈ Si,
∑
j

aj,kxj ≥ bk]

≥ Pr[∀k ∈ Si,
∑
j

aj,kxj ≥ Ci]

= Pr[
∑
j

aj,k0xj ≥ Ci] (k0 is the smalles index in Si)

= 1− Pr[
∑
j

aj,k0xj < Ci]

≥ 1− δ.

As there are l rounds,

Pr[∀i,Ωi] ≥ 1− tδl

≥ 1− δ

The first inequality comes from union bound. Hence Ax ≥ b with probability at least 1− δ.

On the other hand, E[
∑
cixi] ≤ l

θ
OPT. By Markov inequality we have

Pr[
∑

cixi ≥
l

δθ
OPT] ≤ δ.

Here l
δθ

= O(log t) = O(log log T) where the constant is related to δ. Combining two tail

bounds and by union bound, we have

Pr[
∑

cixi < O(log log T)OPT ∧ Ax ≥ b] ≥ 1− 2δ.

�

Now we solve IP(4.6). First we relax the constraint x ∈ {0, 1}n to x ∈ [0, 1]n and obtain

its optimal solution x∗. Define S = {i | x∗i ≥ θ}. For any i ∈ S, we round x∗ to 1; for the

rest we round x∗ to 1 with probability x∗

θ
for l rounds, and once it is rounded to 1, set it to

1. Here θ and l are all set same as in Theorem 4.4.5.

42

Theorem 4.4.6. If there is one integer solution for IP(4.6) with cost C, our rounding

method finds a solution with probability at least 1− 2δ with cost at most (βC log log logm)C

and Ax ≥ z − 1, where βC is a constant number related to δ.

Proof. First, the cost of elements in S is at most θOPT and OPT ≤ C.

After rounding the elements in S, we compute the residual of the constraints to obtain

A′x ≥ b, where A′ is a submatrix of A and bj = zj −
∑

i∈S ai,jxi. As A′ is monotone we

assume b is also monotone, otherwise the non-monotone constraints must be dominated by

some other constraints. Consider the set G = {k : bk ≥ 1} and the constraint A′Gx ≥ bG.

If W ≥ m−c0 for some constant c0,

max
i∈G

bi ≤ max
i∈G

zi ≤ log
m

εm−c0
= (c0 + 1) logm+ log

1

ε
,

and as mini∈G bi ≥ 1 we have maxi∈G bi/mini∈G bi ≤ (c0 + 1) logm+ log 1
ε
.

If W < m−c0 , it leads to min zi > i− logW ≥ log 1
W

. Assume u is the smallest one in G

and w is the largest one in G. Therefore bu = zu −Mu and bw = zw −Mw with Mu ≤ Mw.

And

bw
bu
≤

log m
εW
−Mw

max(log 1
W
−Mu, 1)

=
log m

ε

max(log 1
W
−Mu, 1)

+
log 1

W
−Mw

max(log 1
W
−Mu, 1)

≤ log
m

ε
+ 1

The first inequality follows from the upper-bound and lower-bound of z.

By Theorem 4.4.5 we know that with probability at least 1 − 2δ the cost is at most

O(log log logm)OPT and A′Gx ≥ bG. For those i 6∈ G, Aix ≥ 0 always hold, which leads to

A′ix ≥ bi − 1. Hence finally, there exists a constant number βC such that the total cost is at

most (βC log log logm)C and Ax ≥ z − 1. �

As there are only logm inequality constraints in IP(4.6), the fractional solution of it has

43

Algorithm 7 Approximation for minimum-element

1: U ← ∅
2: Enumerate W from b to 2Nb
3: for each W do
4: compute set of signatures
5: for each signature z do
6: solve the corresponding IP and obtain a candidate set S
7: if cost of S ≤ (βC log log logm)C and E[mini∈S Xi] < E[mini∈U Xi] then
8: U ← S
9: end if
10: end for
11: end for
12: Return U.

at most logm non-integer elements. By Theorem 4.4.6,

Pr[
∑

cixi ≤ (βC log log logm)C ∧ Ax ≥ z − 1] > 0,

which means there exists one. Thus we can replace the rounding by enumerating all 2logm =

m possible values to find it.

Now we are ready to prove Theorem 4.4.1, the pseudocode can be found in Algorithm 7.

proof of Theorem 4.4.1. Assume the optimal set is S∗ with objective value OPT and cost at

most C. It is obvious that there exists i∗ such OPT ≤ 2i
∗
b ≤ 2OPT. When W = 2i

∗
b, there

exists a signature z such that S∗ is a solution for its corresponding IP. By Theorem 4.4.6

we can find a solution with cost at most (βC log log logm)C and Ax ≥ z − 1. According to

Ax ≥ z − 1,

E[min
i∈S

Xi] ≤ Val(z − 1) = 2Val(z) ≤ O(W) ≤ O(OPT).

Then applying the greedy algorithm in Theorem 4.2.3, we can obtain a solution with total

cost at most (βC log log logm)C. �

44

Chapter 5

Conclusion

In this thesis, we propose some new approaches for approximating maximum-element and

minimization version of maximum-element. Our approach works not only for maximiza-

tion but also for minimization. Our core result is a PTAS for maximum-element, which

improves the best previous constant approximation. We also have an improved approxima-

tion for minimum-element using a new integer programming.

We have considered maximum-element problem and minimum-element problem in

the non-adaptive model. However, there are still many interesting open questions. Here I

list some which I think are worth considering.

1. The most important problem is to design adaptive algorithms for either maximum-

element or minimum-element. In many scenarios, make decision adaptively is

possible and it can improve performance significantly.

2. Can we design FPTAS for maximum-element problem? If not, how to prove the

hardness?

3. Is there any polynomial time constant approximation for MAXK problem?

4. Can our result for minimum-element on the extra cost be improved to a constant

factor, or even 1 + ε for any 0 < ε < 0.5?

45

5. Take the summation of the top k elements instead of the maximum. The solution

for maximum is an O(k) approximation for it. Is there an approximation better than

O(k)? Is there even a PTAS?

46

Bibliography

[1] Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic matching.

Information Processing Letters, 111(15):731–737, 2011.

[2] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri

Rudra. When lp is the cure for your matching woes: Improved bounds for stochastic

matchings. Algorithmica, 63(4):733–762, 2012.

[3] B.C.Dean, M.X.Goemans, and Jan Vondrák. Approximating the stochastic knapsack

problem: the benefit of adaptivity. In Proc. 45th FOCS, 2004.

[4] Victor Bryant and Hazel Perfect. Independence theory in combinatorics : an introducto-

ry account with applications to graphs and transversals. London ; New York : Chapman

and Hall, 1980. Includes index.

[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximiza-

tion via the multilinear relaxation and contention resolution schemes. SIAM Journal

on Computing, 43(6):1831–1879, 2014.

[6] Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-armed

bandit with general reward functions. NIPS’16, 2016.

[7] G.B. Dantzig. Linear programming under uncertainty. Management Science, 1(3):197–

206, 1955.

[8] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M. Hellerstein, and Wei

Hong. Model-driven data acquisition in sensor networks. In Proceedings of the Thirtieth

47

International Conference on Very Large Data Bases - Volume 30, VLDB ’04, pages

588–599. VLDB Endowment, 2004.

[9] Ashish Goel, Sudipto Guha, and Kamesh Munagala. Asking the right questions: Model-

driven optimization using probes. In Proceedings of the Twenty-fifth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’06, pages

203–212, New York, NY, USA, 2006. ACM.

[10] Ashish Goel, Sudipto Guha, and Kamesh Munagala. How to probe for an extreme value.

ACM Trans. Algorithms, 7(1):12:1–12:20, December 2010.

[11] Sudipto Guha and Kamesh Munagala. Exceeding expectations and clustering uncertain

data. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, pages 269–278. ACM, 2009.

[12] Sudipto Guha, Kamesh Munagala, and Saswati Sarkar. Information acquisition and ex-

ploitation in multichannel wireless systems. IEEE Transactions on Information Theory,

2007.

[13] Anupam Gupta, Martin Pál, R Ravi, and Amitabh Sinha. Boosted sampling: approxi-

mation algorithms for stochastic optimization. In Proceedings of the thirty-sixth annual

ACM symposium on Theory of computing, pages 417–426. ACM, 2004.

[14] Jon Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty con-

nections. SIAM Journal on Computing, 30(1):191–217, 2000.

[15] Jian Li and Amol Deshpande. Maximizing expected utility for stochastic combinatorial

optimization problems. In Proceedings of the 2011 IEEE 52Nd Annual Symposium on

Foundations of Computer Science, FOCS ’11, pages 797–806, Washington, DC, USA,

2011. IEEE Computer Society.

[16] Jian Li and Yu Liu. Approximation algorithms for stochastic combinatorial optimization

problems. Journal of the Operations Research Society of China, 4(1):1–47, 2016.

48

[17] Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approxima-

tion. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing,

STOC ’13, pages 971–980, New York, NY, USA, 2013. ACM.

[18] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-

rithms and Probabilistic Analysis. Cambridge University Press, New York, NY, USA,

2005.

[19] Roger Myerson and Mark A. Satterthwaite. Efficient mechanisms for bilateral trading.

Journal of Economic Theory, 29(2):265–281, 1983.

[20] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of

approximations for maximizing submodular set functions-i. Mathematical Programming,

14(1):265–294, 1978.

[21] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–

591, July 1997.

[22] Chaitanya Swamy and David B. Shmoys. Approximation algorithms for 2-stage stochas-

tic optimization problems. SIGACT News, 37(1):33–46, 2006.

[23] David P Williamson and David B Shmoys. The design of approximation algorithms.

Cambridge University Press, 2011.

49

50

Acknowledgment

First of all, I would like to thank my mentor, Assistant Professor Li Jian, for his guidance

and encouragement on my research. It is my great honor to be a student of Professor Li.

Next, I would like to thank IIIS. It gives me a chance to know so many good people and

chance to learn what I am interested in. Communication with others and learning helps me

not only in research but also in life. It is lucky to be a member of IIIS.

And I want to say thank you to my thesis reviewers, Professor Chen Wei and Professor

Duan Ran. Thanks for reviewing my thesis carefully. They give me much useful advice and

I benefit a lot.

Finally, thank all guys who have helped me.

51

Curriculum Vitae

Resume

Born on September 25,1989.

Admitted to Institute for Interdisciplinary Information Sciences, Tsinghua University in

August, 2008, and got the Bachelor degree in computer science and technology in 2012.

Admitted to Institute for Interdisciplinary Information Sciences, Tsinghua University for

a Master degree in August, 2012.

Publication

1. Jian Li and Yu Liu. Approximation Algorithms for Stochastic Combinatorial Opti-

mization Problems. In Journal of the Operations Research Society of China, 4(1):1-47,

2016. (SCI, WOS:000383045300001)

2. Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu and Pinyan Lu. Combinatorial Multi-Armed

Bandit with General Reward Functions. NIPS’16, 2016.

3. Hu Ding, Yu Liu, Lingxiao Huang, and Jian Li. K-Means Clustering with Distributed

Dimensions. ICML 2016: 1339-1348.

52

