
New Challenges for Clustering:

Massivenss and Uncertainty

Thesis Submitted to

Tsinghua University

in partial fulfillment of the requirement

for the degree of

Master of Science

in

Computer Science and Technology

by

Xuan Wu

Thesis Supervisor: Associate Professor Jian Li

June 2018

II

New Challenges for Clustering: Massivenss and

Uncertainty

by

Xuan Wu

Submitted to the Institute for interdisciplinary Information Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

at

TSINGHUA UNIVERSITY

June 2018

c© TSINGHUA UNIVERSITY 2018. All rights reserved.

Author .
Institute for interdisciplinary Information Sciences

April 18, 2018

Certified by. .
Jian Li

Associate Professor
Thesis Supervisor

IV

Acknowledgments

First of all, I want to give special thanks to my advisor Dr.Jian Li. Three years ago,

I was puzzled about my future and Dr.Li gave me the chance to stay in Tsinghua for

graduate study. In the past three years, I have received extremely valuable experience

in doing research with Dr.Li. Without Dr.Li, I can not even find my interest in

theoretical computer science. I also want to thank his generous support in everything

good to my research career. In particular, I appreciate his support in organizing the

theoretical tea time and allowing me to visit Dr.Feldman in University of Haifa.

I want to thank my collaborators, Doctor Dan Feldman, Doctor Lingxiao Huang,

Doctor Shaofeng H.-C Jiang, Shichuan Deng, Wenzheng Li and Changzhi Xie. With-

out them, most results in this paper can not appear.

Finally, I want to thank my parents. Their unconditional love and support give

me the courage to pursue my dreams. Without the help of my father, I can not win

the Olympiad of Mathematics and Informatics and get the chance to study in Yao

Class, Tsinghua.

V

VI

New Challenges for Clustering: Massivenss and

Uncertainty

by

Xuan Wu

Submitted to the Tsinghua University
on April 18, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Clustering is a central problem in unsupervised learning and data analytics. Solving
clustering problems over uncertain and massive data has become increasingly impor-
tant in many applications and has attracted a lot of attention in recent years. In this
paper, we focus on two new challenges of clustering: uncertainty and massiveness.

In many application scenarios, the precise locations of the points are not known be-
fore, but can be estimated through noisy measurements. To capture this, we propose
a new model for clustering such uncertain data. In our model, there is a collection X
of uncertain points in Rd. Instead of knowing the precise location of every uncertain
point x ∈ X, we can only estimate their locations through observations with noise.
Upon each observation on an uncertain point x, we obtain an independent sample,
which is assumed to follow a Gaussian distribution N(x, Id), where Id is the d × d
identity matrix. The objective is to compute clustering problem such as the opti-
mal k-median clustering on X based on observations. We refer to the total number
of observations as sample complexity which measures the statistical efficiency of an
algorithm. we propose statistically and computationally efficient algorithms for com-
puting approximate k-median clustering in this new model. In particular, we provide
constant factor approximation algorithms with low sample complexity. To comple-
ment our algorithmic results, we also provide nearly matching sample complexity
lower bounds.

We also consider the scenario where there is a large number of data points for the
clustering task. In particular, the data may be too large to be read once. We study
robust coresets for (k, z)-clustering with outliers. We show an improved connection
between α-approximation and robust coreset. This also leads to improvement upon
the previous best known bound of the size of robust coreset for Euclidean space
[Feldman and Langberg, STOC 11, [39]]. The new bound entails a few new results in
clustering and property testing.

VII

Dissertation Supervisor: Associate Professor Jian Li

VIII

Contents

1 Introduction 1

1.1 New Model to Capture Clustering of Uncertain Data 2

1.1.1 Main Contribution . 4

1.1.2 Technique Overview . 6

1.2 Handling Massive Data: Robust Coreset and Property Testing 7

1.3 Related Work . 10

1.4 Preliminaries . 12

2 The Sample Complexity of Stochastic k-median Problem 17

2.1 An Upper Confidence Bound(UCB)-based Algorithm 17

2.1.1 Computing Sum of Distances from n Arms to k Points 18

2.1.2 Noisy K-Median . 21

2.2 A Testing-Based Algorithm for d = k = 1 24

2.2.1 Testing the Total Distance from n Arms to 1 Arm 24

2.2.2 Noisy 1-Median . 31

2.3 A Testing-Based Algorithm for General Case: Sharper Dependence on n 35

2.3.1 Testing the Total Distance from n Arms to k Centers 36

2.3.2 Testing the Optimal k-Median Value 36

2.3.3 Noisy k-Median . 41

2.4 Lower Bound . 42

2.4.1 Instance Lower Bound . 42

2.4.2 Worst-Case Lower Bound . 46

IX

3 Robust Coreset and Property Testing 49

3.1 Approximation to Robust Coreset . 50

3.2 Application to Property Testing . 53

A Missing Proofs 57

B Coreset Construction 67

X

Chapter 1

Introduction

Clustering is a central problem in unsupervised learning, data analytics, and statistics

[70, 80, 6, 32]. Among various objectives of clustering, the center based clustering

is arguably the most popular one. Particularly, in this paper, we care about the

(k, z)-clustering problems. In the (k, z)-clustering problem, the objective is to find

a k-subset C ∈ [X]k (which are called centers), such that the objective function

distz(X,C) :=
∑

x∈X d
z(x,C) is minimized, where d(x,C) := miny∈C d(x, y) is the

distance from the point x to its closest center in C. In particular, (k, 1)-clustering is

the well known k-median problem, (k, 2)-clustering the k-means problem, and (k,∞)-

clustering the k-center problem.

As the dramatically increasing of the data set volume, dealing with uncertain and

massive data is becoming a novel challenging task. Focusing on these challenges, this

paper consists of two main parts. To capture the task of clustering uncertain data,

in Chapter 2, we propose a new model for clustering uncertain Euclidean points. To

handle massive data, in Chapter 3, we study the notion of robust coreset for (k, z)-

clustering with outliers. The robust coreset has applications in property testing,

which is a representative task for handling massive data. We will discuss the two

parts more precisely in following two sections.

1

1.1 New Model to Capture Clustering of Uncer-

tain Data

Clustering uncertain data has attracted lots of attention from computer science com-

munity (see, e.g., [82], [59], [34], [52]). In this chapter, we propose a new model for

clustering noisy data points in Euclidean space. In this model, the task is to cluster

a set X of n uncertain data points in Rd. Instead of having the precise coordinate

of every point in X, we can only take observations on these points. We refer to the

access to every point x ∈ X as sample access O(x). In an observation of O(x), we

take one sample from N(x, Id).

One important motivation of our model is the scenario where we have some ob-

servations on data points instead of having accurate representations of data points.

In this case, we wonder how to cluster these data points efficiently while minimizing

the cost of observations.

We discuss two practical scenarios.

Scenario One A scientific team needs to distribute a collection of battery-powered

wireless sensors in Antarctica. Certain sensor networking protocol requires to dividing

the sensors into k clusters. To obtain a good clustering, each sensor needs to report its

coordinate to the central server. Each sensor has a positioning device (which has low

battery power and inaccurate measures). Each position measurement returns a noisy

sample, which is assumed to follow a Gaussian distribution centered at the sensor.

Question: how to cluster the sensors efficiently meanwhile minimizing the total cost

(i.e., the number of measurements)?

Scenario Two A recommendation system models every customer as a high dimen-

sional point in Euclidean space and wants to divide the customers into some clusters.

However, the system does not have the exact information of each customer. Instead,

the system has many ”realizations” of every customer. Here, a realization is a record

of a customer’s behavior, which reflects some partial information about the customer.

2

For example, her evaluation of a book or his recommendation of a book to a friend.

Assume that there is a predictive machine learning algorithm that is used to estimate

the customer’s coordinate through his/her “realizations”. Question: how to cluster

the customers efficiently by using as few “realizations” as possible?

Among various clustering objectives, the center-based clustering is fundamentally

important. The k-median clustering problem requires to partition the input data set

X into k sets X1, ..., Xk and assign a center vi to every Xi such that

k∑
i=1

∑
x∈Xi

‖x− vi‖ (1.1)

is minimized over all possible partitions and centers, where ‖·‖ is the Euclidean norm.

We consider the following noisy version of k-median in this chapter.

Definition 1.1.1 (Noisy k-median Problem). Let O(x) denote the sample access to

N(x, Id), i.e., the standard Gaussian distribution centered at x. Given sample access

{O(xj) : j = 1, 2, ..., n} to n uncertain points. In every step, we are allowed to

choose one O(xi) and take a sample from it. The goal is to obtain a constant factor

approximation of the optimal k-median value

OPT = min
V :|V |=k

N∑
i=1

min
v∈V
‖xj − v‖.

and the corresponding approximate clustering centers, with probability at least 1− δ,

while taking as few samples as possible.

Beyond (approximately) finding the optimal k-median value, we additionally re-

quire to find the corresponding centers. We want to remark that one can deduce from

our algorithms and proofs that the additional task is a by-product. However, in many

practical scenarios, finding the centers can be beneficial. In particular, the centers

are the compression of the data so that one can quickly answer the question ”which

cluster does a point belong to?” with the help of centers.

Our work is closely related to the stochastic multi-armed bandit setting, which

is a classical model for characterizing the exploration-exploitation trade-off when the

3

environment is stochastic. In the usual setting of multi-armed bandit, we are given

n stochastic arms, each associated with an unknown distribution of reward. In each

step, we can pick an arm and get a reward sampled from its corresponding distribu-

tion. The typical objective for a multi-armed bandit instance includes maximizing

the cumulative sum of rewards or minimizing the cumulative regret (see e.g., [14, 17]).

Our work bears more resemblance with the so-called pure exploration setting, where

the objective is to identify the optimal solution (or an approximate optimal one)

with high-confidence while using as few samples as possible. This setting has at-

tracted significant attention by its wide applications in medical trials, crowdsourcing,

communication network, databases and online advertising [16, 29, 83]. Due to the

relationship to the multi-armed bandit model, we also call the sample access O(x)

(x ∈ Rd) an arm for simplicity.

Unlike in the usual setting of multi-armed bandit, one arm in our setting corre-

sponds to a multi-dimensional distribution (in Rd) instead of a reward distribution

(in R). If d = 1, our model is actually the multi-armed bandit model. To the best of

our knowledge, there is no existing result about clustering in the multi-armed bandit

model. In this chapter, we will discuss the 1-median clustering in the multi-armed

bandit model as a special case (Section 2.2) and provide an algorithmic result (Theo-

rem 2.2.6) and a lower bound result (Theorem 2.4.1) which together gives the almost

optimal sample complexity.

1.1.1 Main Contribution

We provide algorithmic results and lower bound results for Noisy k-median (Problem

1.1.1).

Theorem 1.1.2 (Informal statements of Theorems 2.1.3, 2.3.4 and 2.4.5). Let X =

{x1, ..., xn} ⊂ Rd. Let OPT = minV :|V |=k
∑N

i=1 minv∈V ‖xj−v‖. There is an algorithm

noisyKmedian, given sample access O(xj) (j ∈ [n]), outputs an O(1)-approximate

k-median clustering and an O(1)-approximate k-median value on X, with sample

4

complexity

Õ(d(n3OPT−2 + n)).

There is another algorithm noisyKmedian2, given sample access to O(xj), j ∈ [n],

outputs an O(1)-approximate k-median clustering and an O(1)-approximate k-median

value on X, with sample complexity

Õ(dk2(n2OPT−2 + n)).

On the other hand, every algorithm which computes a 2-approximation for every

noisy k-median instance requires at least

Ω(n2OPT−2 + n)

many samples.

Another natural question for our model also arises: what is the best approxima-

tion ratio, e.g., can it be 1 + ε for any ε > 0? What is the sample complexity for

achieving a better approximation ratio? This question has a simple positive answer:

by noisyKmedian or noisyKmedian2, we can obtain an O(1)-approximation for OPT.

We then estimate each uncertain point up to an error εOPT/n and run any exist-

ing k-median algorithms on these estimations, e.g., exhaustive search 1. The sample

complexity is O(dε−2n3OPT−2). In Appendix B, we propose another algorithm with

the sample complexity

Õ
(
d(n3OPT−2 + ε−4kn2OPT−2 + n)

)
which is more efficient when n� kε−2. The main idea is to first construct a coreset

and then run existing k-median algorithms on the coreset.

1If either k or d is not constant, exhaustive search requires exponential time. If one cares about
the running time, we can use other known polynomial time approximation algorithms, like BPRS
([15]).

5

1.1.2 Technique Overview

Overview of Our NoisyKMedian Algorithm Our algorithm NoisyKMedian is

UCB-based (Upper confidence Bound), i.e., it maintains a confidence ball on each

uncertain point. Precisely, at the i-th round, we estimate every uncertain point x ∈ X

to O(2−i) in the Euclidean distance and compute the approximate optimal k centers

on these estimates. Then we check if current centers are actually an O(1)-approximate

k-median clustering. Our checking process involves the problem of computing the

distance from n uncertain points to k centers, which has a delicate structure. If an

uncertain point is very close to a center, we need to spend many samples to estimate

the distance. To overcome this problem, we design a UCB-based algorithm DisNATKP

to omit those distances which are too small compared to the total distance.

Overview of Our NoisyKMedian2 Algorithm Our algorithm NoisyKMedian2 is

based on an inherently different idea. This algorithm is testing-based and designed to

achieve a better sample complexity on the parameter n. To achieve this goal, we need

a process with the same function as DisNATKP but with tighter sample complexity

on n. In fact, we construct such a process called TestNATKP, based on a sampling

technique which estimates the contribution of those data points close to the given k

centers and takes much fewer samples than DisNATKP. Then based on TestNAPKP,

we show that given a noisy k-median instance and a number C > 0, there is an

algorithm TestKmedian to test whether the optimal k-median value is larger than

10C or smaller than C/10. At a high level, our testing algorithm guesses arms which

can be an estimation of the optimal centers and estimates the locations of those arms

by taking enough samples. However, our testing algorithm needs to call TestNAPKP

at least Ω(nk) times. Hence Algorithm TestKmedian requires exponential time in

k which is a weakness compared to NoisyKMedian. Finally, we construct a simple

binary search procedure NoisyKMedian2 by calling TestKmedian to decide the value

of (approximate) optimal solution.

6

Overview of Our Lower Bound We provide both the instance lower bound and

worst-case lower bound for the noisy k-median problem. For our instance lower bound

Ω(n2OPT−2 + n), we use the “Change of Distribution” lemma (Lemma 1.4.3) and

follow a classical framework for lower bounding the sample complexity of randomized

algorithms. We perturb the data points and obtain a new instance such that the opti-

mal k-median value changes significantly. Then we use the ”Change of Distribution”

lemma to lower bound the sample complexity of any algorithm which distinguishes

the two instances. Especially, when d = k = 1, our instance lower bound (Theorem

2.4.5) matches the algorithmic upper bound (Theorem 2.1.3).

For our worst-case lower bound, we construct a sequence of noisy k-median in-

stances which require Ω(
√
dn2OPT−2 +n) samples. It implies that the factor d is also

important and cannot be omitted in the sample upper bound. Our main approach is

to reduce the problem to the statistical task of distinguishing the case that the center

of a normal distribution is 0 or significantly larger than 0 (see Lemma 2.4.1).

1.2 Handling Massive Data: Robust Coreset and

Property Testing

A powerful technique for solving the (k, z)-clustering problem is to construct coreset-

s [56, 28, 39, 42]. A coreset is a weighted subset of the point set, such that for any set

of k centers, the objective function computed from the coreset is approximately the

same as that computed from all points in X. Hence, a coreset can be used as proxy

for the full data set: one can apply the same algorithm on the coreset, and the result

on the coreset approximates that on the full data set.

Definition 1.2.1. An ε-coreset for the (k, z)-clustering problem in metric space

M(X, d) is a weighted subset S of X with weight w : S → R≥0
2, such that for

2Some work may allow the weight to be negative, but we require it to be nonnegative in our
work.

7

any k-subset C ∈ [X]k,

∑
x∈S

w(x) · dz(x,C) ∈ (1± ε) · Kz(X,C).

Typically, we require that the size of the coreset depends on 1/ε, k and z (inde-

pendent of |X|). Apparently, a small coreset is much cheaper to store and can be used

to estimate the objective function more efficiently. In fact, constructing coresets can

be useful in designing more efficient approximation algorithms for many clustering

problems, with various constraints and outliers [39, 43, 42, 13, 45, 71].

However, constructing coresets needs at least reading the whole data set once.

When dealing with massive data, especially when the data becomes to large to be

read once, we require the notion of robust coreset which is a relaxed version of coreset.

The most important advantage of robust coreset is that it can be constructed by

uniform sampling (and hence in sublinear time)The notion of robust coreset was first

introduced in [39]. In the following, we give the definition of robust coreset for the

(k, z)-clustering problem with outliers.

Definition 1.2.2 (robust coresets). Let M(X, d) be a metric space. Let 0 < γ ≤ 1,

0 ≤ ε, α ≤ 1
4
, k ≥ 1 and z > 0. For any H ⊆ X and C ∈ [X]k, let

K−γz (H,C) := min
H′⊆H:|H′|=d(1−γ)|H|e

∑
x∈H′

dz(x,C)

denote the sum of the smallest d(1−γ)|H|e values dz(x,C) over x ∈ H (i.e., we exclude

the largest γ|H| values as outliers). An (α, ε)-robust coreset for the (k, z)-clustering

problem with outliers is a subset S ⊆ X such that for any k-subset C ∈ [X]k and any

α < γ < 1− α,

(1− ε) · K
−(γ+α)
z (X,C)

|X|
≤ K

−γ
z (S,C)

|S|
≤ (1 + ε) · K

−(γ−α)
z (X,C)

|X|
.

Our result for robust coreset for (k, z)-clustering is presented in the following

theorem, which generalizes and improves the prior result in [39] for Euclidean space.

8

Beyond Euclidean Space, we also generalize the robust coreset to metric space with

bounded doubling dimension which is arguably the most popular notion to capture

the complexity of metric space. Precisely, a metric space M(X, d) has doubling

dimension t, if t is the smallest number such that every ball in X can be covered by

at most 2t balls of half the radius [8, 53]. We denote the doubling dimension by

ddim(M). The doubling dimension measures the intrinsic dimensionality of a general

metric space, and it generalizes the dimension of normed vector spaces, where t-

dimensional `p space has doubling dimension O(t) [8]. Many problems have been

studied in doubling metrics, such as spanners [46, 33, 50, 51, 19, 25, 24, 77, 20],

metric embedding [53, 1, 21], nearest neighbor search [31, 60, 57], and approximation

algorithms [79, 10, 18, 23, 22, 45].

Theorem 1.2.3 (informal, robust coreset). Let M(X, d) be a doubling metrics (a

d-dimensional Euclidean space resp.). Let S be a uniform sample of size Õ(k ·

ddim(M)/α2) (Õ(kd/α2) resp.) from X. Then with constant probability, S is an

(α, ε)-robust coreset ((α, 0)-robust coreset resp.) for the (k, z)-clustering problem with

outliers.

The definition of robust coreset in [39] is slightly different from ours. 3 One can

directly check that in Euclidean space, an (γε/4, 0)-robust coreset in Definition 1.2.2

is an (γ, ε)-coreset in [39, Definition 8.1]. Thus the above theorem improves the size

of (γ, ε)-coreset in [39, Corollary 8.4] from Õ(kdγ−2ε−4) to Õ(kdγ−2ε−2).

Furthermore, we demonstrate an application of robust coresets in property testing

(Section 3.2). We design a simple testing algorithm for (k, z)-clustering. Alon et

al. [4] first considered the property testing problem in the context of clustering. In

particular, they studied the testing algorithm for k-center clustering. In this paper,

we use robust coreset to develop a unified testing algorithm for (k, z)-clustering (for

constant k and z). The testing algorithms can be converted into a sublinear time

approximation algorithms for clustering with outliers. As pointed out in [4], one

3 In [39, Definition 8.1], S ⊂ X is called a (γ, ε)-coreset if for every C ∈ [X]k, γ1 ≥ γ and ε1 ≥ ε,
(1− ε1) · 1

|X|K
−(1−γ1+ε1γ1)
1 (X,C) ≤ 1

|S|K
−(1−γ1)
1 (S,C) ≤ (1 + ε1) · 1

|X|K
−(1−γ1−ε1γ1)
1 (X,C).

9

interesting benefit of such algorithms is that they can answer the query ”which cluster

does a data point belong to”, without really partition all the data points.

Constructing robust coresets is also a useful subroutine in several other problems,

such as robust median and bi-criteria approximation for projective clustering (see

[39]). Hence, our improvement may lead to certain improvements of these problems

as well. Since this is not the focus of the this paper, we do not go into the details.

1.3 Related Work

Deterministic k-median clustering has attracted a lot of attention. Charikar et al. [26]

gave the first constant factor (20
3

) approximation algorithm by LP-rounding. Jain and

Vazirani [62] improved the constant factor to 6 by reducing the k-median problem to

the Uncapacitated Facility Location (UFL) problem. The approximation ratio was

further improved to 3+ε by the well-known local search heuristics [61, 7]. The current

best approximation ratio achieved by [15] is 2.675 + ε, based on a breakthrough work

[68].

Clustering problems in different stochastic settings have been studied before, such

as the locational uncertainty model and the existential uncertainty model. In both

stochastic geometry models, the distribution of each data point is known previously.

Many clustering problems have been studied in such models. Feldman and Langberg

[40] considered the k-median problem, the j-flat-median (i.e., subspace approxima-

tion) problem, and the k-line-median problem in the deterministic setting. Note that

their techniques also work for the stochastic variants. Huang and Li [59] investigated

the stochastic k-center and j-flat-center problems in both stochastic geometry models.

Recently, Mazumdar and Saha [72] also considered clustering with noisy queries.

However, their model is inherently different from ours. The oracle in their model an-

swers query of the the form “Do points i and j belong to the same cluster” and returns

the correct answer with certain probability. Moreover, they study the problem of ex-

actly reconstructing the underling clustering instead of computing an approximated

clustering.

10

Feldman and Langberg [39] first studied the notion of robust coreset to handle the

clustering problems with outliers. In Rd, they showed how to construct a (γ, ε)-coreset

4 of size Õ(kdε−4γ−2) by uniform sampling. We improve the bound to Õ(kdε−2γ−2).

Later, Feldman et al. [43] developed another notion called weighted coreset to handle

outliers. They used such coresets to design an (1 + ε)-approximation algorithm for

the k-median problem with outliers.

In the seminal paper [2], Agarwal et al. proposed the notion of coresets for the

directional width problem (in which a coreset is called an ε-kernel) and several other

geometric shape-fitting problems. Since then, coresets have become increasingly more

relevant in the era of big data as they can reduce the size of a dataset with provable

guarantee that the answer on the coreset is a close approximation of the one on the

whole dataset. Many efficient algorithms for constructing small coresets for clustering

problems in Euclidean spaces are known (see e.g., [3, 54, 28, 55, 67, 39, 42, 13]). In

particular, Feldman and Langberg [39] showed a construction for ε-coresets of size

Õ(dk/ε2z) for general (k, z)-clustering problems with arbitrary k and z, in Õ(nk)

time. For the special case that z = 2 which is the k-means clustering, Braverman

et al. [13] improved the size to Õ(k2 min {k/ε, d} /ε2), which is independent of the

dimensionality d. For another special case z = ∞, which is the k-center clustering,

an ε-coreset of size O(k/εd) can be constructed in O(n + k/εd) time, for Rd [3, 54].

For another special case z =∞, which is the k-center clustering, an ε-coreset of size

O(k/εd) can be constructed in O(n+k/εd) time, for Rd [3, 54]. For general metrics, an

ε-coreset for the (k, z)-clustering problem of size O(k log n/ε2z) can be constructed

in time Õ(nk) [39]. We refer interested readers to Phillips’s survey [73] for more

construction algorithms as well as the applications of coresets in many other areas.

Property Testing is proposed in the seminal work of [75] and [47], which is gen-

erally the study of designing and analyzing of randomized decision algorithm on

efficiently making decision whether the given instance is having certain property or

4Note that their definition [39, Definition 8.1] is similar but slightly different to ours. However,
considering the (k, z)-clustering problem with outliers, one can check that an (εγ/4, ε)-robust coreset
in our Definition 1.2.2 is a (γ, ε)-coreset in [39, Definition 8.1]. In fact, our defintion is more general.
It is unclear whether their result applies to our definition.

11

somewhat far from having it. Significantly, the query complexity of efficient prop-

erty testing algorithm is often sublinear on the size of its accessing instance. Many

important properties have been studied in the context of property testing, such as

linearity ([12],[11],[49],[76],[35]), low-degree([4], [5],[63],[64],[74]), and monotonicity

([37],[38],[44],[48],[30]).

1.4 Preliminaries

Recall that O(x) (x ∈ Rd) denotes the sample access to uncertain point x with

Gaussian noise, i.e., a sample of O(x) follows from the distribution N(x, Id). Since

our model is a high dimensional variant of the multi-armed bandit model, we also

call O(x) an arm for simplicity. The distance from an arm O(x) to a point p ∈ Rd is

defined to be ‖x− v‖ where ‖ · ‖ is the Euclidean norm.

We use [n] to denote the set {1, 2, . . . , n}. For a point x ∈ Rd and a set of points

V , the distance between x and V is defined to be dist(x, V) = minv∈V ‖x − v‖. For

a set of points X ⊂ Rd, we define cost(X, V) =
∑

x∈X dist(x, V). When V = {v},

with a little abuse of notation we also refer to cost(X, V) as cost(X, v). Also in what

follows, B(x, r) for x ∈ Rd, r > 0 denotes an open ball centered at x with radius r.

We say a point x or an arm O(x) is C-far from a point p if ‖x− p‖ ≥ C.

An algorithm is called an α-approximation algorithm for k-median on X if it

computes a set of k centers such that cost(X, V) ≤ αOPT where OPT is the optimal

k-median value on X. A randomized algorithm is called δ-correct if it succeeds with

probability at least 1− δ.

We use Õα(f) to hide polylogarithmic factor on α and f . Precisely, Õα(f(x))

denotes a variable in O

(
f(x)poly

(
log f(x), logα

))
. We need the following classical

concentration inequality for Gaussian vectors.

Theorem 1.4.1 (See e.g. [81]). Let x be a standard Gaussian vector centered at

µ ∈ Rd, i.e., x is taken from N(µ, Id). Then

Pr(
∣∣‖x− µ‖ − √d∣∣ ≥ ε) ≤ 2 exp (− cε2)

12

for some constant c > 0.

We also need the following classical additive Chernoff bound.

Theorem 1.4.2 (Chernoff Bound). Let ε > 0 be some constant. Let x1, x2, . . . , xm

be i.i.d 0-1 random variables and µ = Ex1. Then

Pr

(∣∣ 1

m

m∑
i=1

xi − µ
∣∣ ≥ ε

)
≤ 2e−2mε2 .

Change of Distribution. The following “Change of Distribution” lemma, formu-

lated by [65], characterizes the behavior of an algorithm when underlying distributions

of the arms are slightly altered, and is thus useful for proving sample complexity lower

bounds. In the following, PrA,C and EA,C denote the probability and expectation when

algorithm A runs on instance C.

Lemma 1.4.3 (Change of Distribution). Let A be an algorithm that runs on n arms,

and let C = (a1, a2, . . . , an) and C ′ = (a′1, a
′
2, . . . , a

′
n) be two sequences of n arms. Let

random variable τi denote the number of samples taken from the i-th arm. For any

event E in Fτ , where τ is a stopping time with respect to the filtration {Ft}t≥0, it

holds that
n∑
i=1

EA,C[τi] KL (ai, a
′
i) ≥ d

(
Pr
A,C

[E], Pr
A,C′

[E]

)
.

Let KL(a1, a2) denote the Kullback-Leibler divergence from the distribution of

arm a2 = O(x2) to that of arm a1 = O(x1). We will need the following fact when

using the above lemma in this paper.

KL(N(x1, Id), N(x2, Id)) =
1

2
‖x1 − x2‖2. (1.2)

Deterministic k-Median Algorithm. In this paper, we use as subroutine an

algorithm in [15], which has the current best approximation guarantee for k-median.

We formalize the result here.

13

Theorem 1.4.4. There is a polynomial time algorithm BPRS(·) which receives a set

X of deterministic points in Rd and outputs an α-approximation k-median clustering

for α < 2.676.

Definition 1.4.5 (doubling dimension). A metric space has doubling dimension at

most t, if any ball can be covered by at most 2t balls of half the radius. The doubling

dimension of a metric space M is denoted as ddim(M).

We adapt the function representation used in [39, Definition 7.2], but specifically

tailored to our own needs. In particular, since we focus on the clustering problems in

a doubling metric M(X, d), the ground set is [X]k (the set of k-subsets) throughout

the paper. When k = 1, we use X to represent [X]1 for simplicity.

We mainly focus on range spaces induced by a metric space. Hence we always

consider indexed function sets. A set of functions F is called indexed, if there exists

an index set V such that F = {fx | x ∈ V }. In most cases, we simply use V = X as

the index set.

Range Space. Let F be an indexed function set. Define range(F , C, r) := {fx ∈ F | fx(C) ≤ r}

for C ∈ [X]k, r ≥ 0. Define ranges(F) :=
{

range(F , C, r) | C ∈ [X]k, r ≥ 0
}

to be

the collection of all the range sets. The range space of F is defined as the pair

(F , ranges(F)).

Now, We define the dimension of a range space, following [39].

Definition 1.4.6 ((shattering) dimension of a range space). Suppose F is an indexed

function set with ground set [X]k. The (shattering) dimension of the range space

(F , ranges(F)), or simply the (shattering) dimension of F , denoted as dim(F), is the

smallest integer t, such that for any D ⊆ F with |D| ≥ 2, |ranges(D)| ≤ |D|t. We

note that in ranges(D), the same ground set [X]k is implicit.

We need a well studied notion in the PAC learning theory, called α-approximation.

Definition 1.4.7 (α-approximation of a range space). Given a range space (F , ranges(F))

(with ground set [X]k), a set S ⊆ F is an α-approximation of the range space, if for

14

every ranges(F , C, r) ∈ ranges(F) (C ∈ [X]k, r ≥ 0)∣∣∣∣ |range(F , C, r)|
|F|

− |S ∩ range(F , C, r)|
|S|

∣∣∣∣ ≤ α.

In particular, it was shown that a small sized (depending on α and the VC dimen-

sion5) independent sample from the function set is an α-approximation with constant

probability (see for example [69]).

5Our definition of the dimension is the shattering dimension of a range space, which tightly relates
to the VC-dimension (see for example [66]). In particular, if dim(F) is t, then the VC-dimension of
F is bounded by O(t log t).

15

16

Chapter 2

The Sample Complexity of

Stochastic k-median Problem

This chapter is devoted to the noisy k-median problem 1.1.1. In Section 2.1, we

present and analyze the first approximation algorithm NoisyKMedian. For the simplest

case k = d = 1, we present an algorithm with lower sample complexity in Section

2.2. Then we apply our technique in Section 2.2 to the general setting and obtain the

second algorithm NoisyKMedian2 in Section 2.3. In Section 2.4, we study both the

instance-wise and worst-case lower bound for noisy k-median. Appendix A includes

all missing proofs in the main text, and Appendix B includes our coreset construction

algorithm.

2.1 An Upper Confidence Bound(UCB)-based Al-

gorithm

In this section, we first develop an algorithm to compute the sum of distances from

n arms to fixed k centers. Then, we show how to solve the noisy k-median problem

based on this algorithm.

17

2.1.1 Computing Sum of Distances from n Arms to k Points

We introduce an UCB-based algorithm for computing the sum of distances from n

arms to fixed k centers. This algorithm is a critical process in Algorithm 2 which

solves the noisy k-median problem.

Intuitively, we can compute distances between every arm-center pair in parallel.

The difficulty is that if the distance from an arm to a center is too small, we need a

huge number of samples to compute a constant factor approximation for this distance.

To deal with this problem, our algorithm DisNATKP iteratively estimates every dis-

tance from an arm to the fixed set V of k centers. In the process of the algorithm,

we omit all remaining small distances once we confirm that their contributions to the

total sum can be safely neglected.

Before stating the result, we highlight the critical steps in DisNATKP. Our algo-

rithm iteratively estimates the distance from every arm to V and always maintains

an estimation D of the total sum. At the beginning of each iteration, the algorithm

checks if the contribution of all remaining arms can be safely neglected compared to

D in Line 3. If it is not the case, the algorithm starts a new iteration. In Line 4,

the algorithm decides the number of samples for each arm in i-th round, say mi. In

Line 5, the algorithm estimates xj for each arm by the average x
(i)
j of mi samples

taken from O(xj). Observe that mi increases exponentially in each round by Lines

4 and 12. Hence the estimation x
(i)
j is guaranteed to be more and more accurate.

From Line 6 to Line 11, the algorithm checks for each j whether x
(i)
j is already a good

approximation for the distance between xj and V . If it is the case, the algorithm

adds dist(x
(i)
j , V) to the total sum of distances D.

Lemma 2.1.1. Let DIS =
∑

j∈[n] dist(xj, V). The algorithm disNATKP(X, V, δ) takes

at most

Õδ−1

(
d(n3DIS−2 + n)

)
many samples and outputs D ∈ [2

5
DIS, 3

2
DIS], with probability at least 1− δ.

Proof. Define events Ei = {ω : ∀j ∈ [n], ‖x(i)
j − xj‖ ≤ ri}, i=1,2,... By the definition

of x
(i)
j , we know that

√
mx

(i)
j follows a Gaussian distribution N(

√
mxj, Id). Then by

18

Algorithm 1 DisNATKP(X = {O(xi) : i = 1, 2, . . . , n}, V, δ)
Require: A sample access O(xi) to N(xi, Id) for each i ∈ [n], a set V of k centers

and a confidence parameter δ ∈ (0, 1).
Ensure: A number D as an approximation of

∑n
i=1 dist(xi, V).

1: r1 ← 1, i← 1, D ← 0, and T ← n.
2: For every j ∈ [n], flag(j)←FALSE.
3: while 48Tri ≥ D do
4: mi = O

(
r−2
i (d+ log(δ−1ni))

)
.

5: Take mi samples from every arm O(xj) (j ∈ [n]) and compute the average x
(i)
j

as an estimate of xj.
6: for j = 1, 2, . . . , n, flag(j) =FALSE do
7: For every v ∈ V , compute cjv = max

y∈B(x
(i)
j ,3ri)

‖y − v‖ and djv =

min
y∈B(x

(i)
j ,3ri)

‖y − v‖.
8: if

(
∀v ∈ V, djv > 0 and ∃v1∀v2 6= v1, cjv1 ≤ 2djv2

)
then

9: flag(j)←TRUE, D ← D + dist(x
(i)
j , V), T ← T − 1.

10: end if
11: end for
12: ri+1 ← ri/2, i← i+ 1.
13: end while
14: return D.

Theorem 1.4.1, we have

Pr
[
‖
√
m(x

(i)
j − xj)‖ ≥

√
mri

]
≤ Pr

[∣∣∣‖√m(x
(i)
j − xj)‖ −

√
d
∣∣∣ ≥ √mri −√d] ≤ δ

3ni2
.

(2.1)

Then by the union bound, we have

Pr[Ei] ≥ 1−
∑
j∈[m]

Pr
[
‖x(i)

j − xj‖ ≥ ri

] Eq. (2.1)

≥ 1− n · δ

3ni2
= 1− δ

3i2
.

Let E = ∩i≥1Ei. We have

Pr[E] ≥ 1− δ

3
(1 +

1

22
+

1

32
+ . . .) ≥ 1− δ

Next, we need the following lemma for preparation. It’s a very fundamental

argument for UCB-based algorithm, and the proof can be found in Appendix A.

19

Lemma 2.1.2. Conditioned on E, for any integer i > 0 and j ∈ [n], if ri ≤

dist(xj, V)/12, then flag(j) has been set to be “TRUE” at the i-th round. If ri >

dist(xj, V)/2, then flag(j) remains “FALSE” at the i-th round. Consequently, if

flag(j) is set to be “TRUE” at the i-th round, then dist(x
(i)
j , V) ∈ [1

2
dist(x, V), 3

2
dist(xj, V)].

Now we come back to prove Lemma 2.1.1. Conditioned on E , denote by TR

the set of j ∈ [n] such that flag(j) is “TRUE” when the algorithm terminates. Let

FL = [n] \ TR be its complement. For j ∈ TR, assume flag(j) is set to be “TRUE”

at the ij-th round of the while-loop. In what follows, we assume variables i, T,D and

ri are taking their values when the algorithm terminates (which means the condition

of Line 3 is not satisfied). Then we have,

D =
∑
j∈TR

dist(x
(ij)
j , V)

Lemma 2.1.2

≤
∑
j∈TR

3

2
dist(xj, V) ≤ 3

2
DIS.

By Lemma 2.1.2, we know that for every j ∈ FL,

dist(xj, v) < 12ri−1 (2.2)

since flag(j) remains “False” at the (i− 1)-th round. Hence

DIS =
∑
j∈[n]

dist(xj, V)

=
∑
j∈TR

dist(xj, V) +
∑
j∈FL

dist(xj, V)

≤
∑
j∈TR

2dist(x
(ij)
j , V) +

∑
j∈FL

12ri−1 (Lemma 2.1.2 and Eq. (2.2))

=2D + 24Tri (ri = ri−1/2)

<2D + 24D/48 (Line 3 and the fact that i is the last round)

=
5

2
D.

Hence D ∈ [2
5
DIS, 3

2
DIS].

Now we consider the sample complexity. Since mi+1 ≥ 4mi, the total sample

20

complexity is bounded by the number of samples taken at the last round of the while-

loop. Therefore, we only need to bound ri at the last round of the while-loop since

the number of samples mi is determined by ri.

Suppose i > 1 and ri−1 <
DIS

1000n
. Then for every j ∈ [n] such that dist(xj, V) ≥

12DIS
500n

≥ 12ri−2, flag(j) has been set to be “TRUE” at the (i− 2)-th round by Lemma

2.1.2. Then in Line 3 of the (i− 1)-th round, we have

D ≥ 1

2

∑
j:dist(xj ,V)≥ 12DIS

500n

dist(xj, V) ≥ 1

2

DIS−
∑

j:dist(xj ,V)< 12DIS
500n

dist(xj, V)


≥ 1

2

(
DIS− n · 12DIS

500n

)
≥ 1

2
(1− 12

500
)DIS = 0.488DIS.

However, we have 48Tri−1 ≤ 48n · DIS
1000n

= 0.048DIS < D. Hence the algorithm

terminates in Line 3 of (i−1)-th round, which is a contradiction. Therefore, based on

E , we have ri = ri−1/2 ≥ DIS
2000n

when the algorithm terminates. On the other hand,

note that r1 = 1 (the algorithm may terminate in the first round). Thus, the total

sample complexity is upper bounded by

Õδ−1(dn ·min{DIS

n
, 1}−2) = Õδ−1

(
d(n3DIS−2 + n)

)
.

�

2.1.2 Noisy K-Median

We are ready to design an algorithm for the Noisy k-Median problem. The main

idea is to estimate the mean of each arm, keeping increasing the accuracy of those

estimations and computing an approximated k-median clustering on empirical data

points until we have confidence that the current clustering is a good approximation of

the optimal clustering. The algorithm uses a constant factor approximation algorithm

BPRS(·) for k-median as a subroutine. In particular, BPRS(n, k, d,X) is given a set

of n points in Rd and outputs a set of k centers which is an α < 2.676 approximation

for the k-median on X.

21

Next, we highlight the critical steps in NoisyKmedian. Our algorithm iteratively

estimates every xj, using more and more samples. In Line 3, the algorithm uses

DisNATKP to computes C
(i)
1 , the sum of distances from all arms to the current set

Ai−1 of k-centers. Then in Line 6, the algorithm estimates xj for each arm by the

average x
(i)
j of mi samples. Observe that mi increases exponentially in each round

which implies that the estimation x
(i)
j is guaranteed to be more and more accurate.

In Lines 7 and 8, the algorithm computes an approximate k-median clustering Ai on

estimations
{
x

(i)
j

}
j∈[n]

and compute the approximate k-median value C
(i)
2 . In Line 9,

the algorithm checks if the two k-median values C
(i)
1 and C

(i)
2 differ by much. If they

are close, the algorithm has an evidence that C
(i)
1 is an O(1)-approximate k-median

value and terminates.

Algorithm 2 NoisyKmedian(X = {O(xi) : i = 1, 2, . . . , n}, δ)
Require: A sample access O(xi) for every i ∈ [n] and a confidence parameter δ ∈

(0, 1).
Ensure: An O(1)-approximate k-median clustering on X and an O(1)-approximate

k-median value..
1: r1 ← 1, i← 1, C1 ←∞, A0 ← a set of arbitrary k centers.
2: while TRUE do
3: C

(i)
1 ← DisNATKP({O(xi) : i = 1, 2, . . . , n}, Ai−1,

δ
100i2

).

4: ri ← min{ri, C
(i)
1

80n
}

5: mi = O
(
r−2
i (d+ log(δ−1ni))

)
.

6: For every j ∈ [n], take mi samples from O(xj) and compute their mean x
(i)
j as

an estimate of xj.

7: Set Ai ←BPRS(n, k, d,Xi := {x(i)
1 ,, x

(i)
n }).

8: C
(i)
2 ←

∑n
j=1 dist(x

(i)
j , Ai).

9: if C
(i)
1 /C

(i)
2 ≤ 10 then

10: BREAK THE WHILE LOOP.
11: end if
12: ri+1 ← ri/2, i← i+ 1.
13: end while
14: return Ai−1, C

(i)
1 .

The main theorem is as follows.

Theorem 2.1.3. With probability at least 1−δ, NoisyKmedian(X, δ) outputs an O(1)-

approximate k-median clustering and an O(1)-approximate k-median value on X, with

22

sample complexity

Õδ−1

(
d(n3OPT−2 + n)

)
,

where OPT := minV⊂Rd,|V |=k cost(X, V) is the optimal k-median value on X.

Proof. Define event Ei = {ω : ∀j ∈ [n], ‖x(i)
j − xj‖ ≤ ri} and E ′i = { The i-th call

of DisNATKP succeeds}. Let E = ∩i≥1(Ei ∩ E ′i). Similar to the proof of Theorem

1.4.1, we have Pr[∩i≥1Ei] ≥ 1− δ/3. By Lemma 2.1.1 and the union bound, we have

Pr[∩i≥1E ′i] ≥ 1− δ
100

(1+ 1
22

+ 1
32

+. . .) ≥ 1−δ/3. Combining the above two inequalities,

we know that Pr[E] ≥ 1− δ. Next, we need the following lemma for preparation, and

its proof can be found in the Appendix A.

Lemma 2.1.4. Conditioned on E, suppose NoisyKmedian({O(xi) : i = 1, 2, . . . , n}, δ)

terminates at the i-th round, then ri ≥ OPT
200n

at the end of the algorithm.

Now we come back to the proof of Theorem 2.1.3. Consider the sample complexity,

it is dominated by the number of samples of the last round. Suppose the algorithm

terminates at the i-th round. Again, we need to bound ri. By Lemma 2.1.4, we have

ri ≥ OPT
200n

. Also note that r1 ≤ 1. Hence the overall sample complexity is bounded by,

Õδ−1(dnmin{ri, 1}−2) = Õδ−1(dn3OPT−2 + n).

Finally, we need to prove that the output Ai−1 and C
(i)
1 satisfy the theorem.

Recall that C
(i)
1 = DisNATKP({O(xi) : i = 1, 2, . . . , N}, Ai−1,

δ
100i2

). Conditioned on

E , C
(i)
1 ∈ [2

5
cost(X,Ai−1), 3

2
cost(X,Ai−1)] by Lemma 2.1.1. Hence we have C

(i)
1 ≥

2
5
cost(X,Ai−1) ≥ 2

5
OPT. On the other hand, we need to prove C

(i)
1 = O(1) · OPT.

Assume that cost(X,Ai−1) > 600OPT. Then we have C
(i)
1 > 240OPT.

Let OPT1 denote the optimal k-median value on Xi. As in the proof of Lemma

23

2.1.4, we have that OPT1 ≤ OPT + nri. Then we have

C
(i)
2 =cost(Xi, Ai)

≤3OPT1 (Defn. of BPRS)

≤3(OPT + nri)

≤3OPT + 3n · C
(i)
1

80n
(Line 4)

≤3OPT + 0.04C
(i)
1 .

Hence

C
(i)
1

C
(i)
2

≥ C
(i)
1

3OPT + 0.04C
(i)
1

C
(i)
1 >240OPT

>
240OPT

3OPT + 10OPT
> 10,

which contradicts the fact that the algorithm terminates at the i-th round. Hence we

have cost(X,Ai−1) ≤ 600OPT. It also implies that C
(i)
1 ≤ 3

2
cost(X,Ai−1) ≤ 900OPT

which completes the proof.

�

2.2 A Testing-Based Algorithm for d = k = 1

Theorem 2.1.3 does not match the sample complexity lower bound in Theorem 2.4.5

on the parameter n. When n→∞, the upper bound is asymptotically n3OPT−2 +n

(regarding d as constant and ignoring logarithmic factors) while the lower bound (by

Theorem 2.4.5)is asymptotically n2OPT−2 + n. This gap exists even in the simplest

case d = k = 1. In this section, we show how to obtain nearly tight sample complexity

upper bound for the simple case of d = k = 1. In the next section, we will apply our

technique to the general setting.

2.2.1 Testing the Total Distance from n Arms to 1 Arm

We first design a testing-based algorithm CostTester for computing the optimal 1-

median clustering in Algorithm 3. Our testing algorithm receives an instance of

24

multi-armed bandit {O(xi), i ∈ [n]}, an armO(x) as a clustering center, and a number

C > 0 as input. The algorithm tests whether the sum
∑n

i=1 |xi−x| is larger than 10C

or smaller than C/10. Note that the setting of CostTester is slightly different from

DisNATKP in Section 2.1.1 since the given center is an uncertain point O(x) instead

of a fixed point. 1 Hence we also need to estimate the location of x in the algorithm.

The main idea is to iteratively set up a threshold Ci (which decreases exponential-

ly), and count the number Ni of data points which are at least Ci-far from the center.

Then we use these numbers Ni to construct an estimation of the total distance. If Ci

is large, the algorithm estimates the location of each data point and checks whether

the distance between each data point to the given point x is larger than Ci (Lines

11-19). If Ci is small, the algorithm cannot afford the number of samples to precise-

ly estimate the location of each data point. To handle this problem, we take some

subsamples from arms, work only with the subsampled set, and get an estimation of

Ni (Lines 6-10). The algorithm achieves the desired sample complexity by balancing

the trade-off between the number of subsampled arms and the number of samples on

each sampled arm.

Remark 2.2.1. For the case of d = 1, our model is identical to the multi-armed bandit

model. Hence we can regard the problem as computing 1-median clustering in the

multi-armed bandit model. This problem can be motivated by the following example:

given a multi-armed bandit instance, a player suspects that all arms are quite similar

and wants to measure the similarity of all arms with as few samples as possible.

Lemma 2.2.2. Given an instance X = {O(xi) : i ∈ [n]}, a clustering center O(x), a

cost parameter C > 0 and a confidence parameter δ ∈ (0, 1), the algorithm CostTester

satisfies the following properties:

• If cost(X, x) ≥ 10C, CostTester(X,O(x), C, δ) accepts with probability at least

1− δ.

1Note that this slight modification can be considered as a generalization from a fixed center to
an uncertain center. The goal of the modification is to simplify the main algorithm in the next
subsection.

25

Algorithm 3 CostTester(X = {O(xj) : j = 1, 2, . . . , n},O(x), C, δ)

Require: An instance X = ({O(xj) : j ∈ [n]}), an arm O(x) as a center, a threshold
C > 0 and a confidence parameter δ ∈ (0, 1).

Ensure: “Accept” or “Reject”.
1: C1 ← max{2C, 100}, T ← 0.
2: L← O(log(C1n/C)) such that 40C1n

C
≤ 2L < 80C1n

C
.

3: for i = 1, 2, . . . , L do

4: ri ← min{1, Ci}, mi ← O

(
r−2
i log(nLδ−1)

)
.

5: Take mi samples from O(x) and compute their average x(i).
6: if Ci ≤ C then

7: Uniformly draw with replacement a subset Si of size O

(
(nLri

C
)2 log(δ−1nL)

)
from X.

8: For every O(xj) ∈ Si, take mi samples from O(xj) and compute their average

x
(i)
j .

9: Ni ← n
|Si|

∣∣∣∣{O(xj) ∈ Si : |x(i) − x(i)
j | ≥ Ci}

∣∣∣∣.
10: end if
11: if Ci > C then
12: Ni ← 0.
13: for O(xj) ∈ X do

14: Take mi samples from O(xj) and compute their average x
(i)
j .

15: if |x(i) − x(i)
j | > Ci then

16: Ni ← Ni + 1.
17: end if
18: end for
19: end if
20: T ← T +NiCi, Ci+1 ← Ci/2.
21: end for
22: return “Accept” if T > C; “Reject” otherwise.

• If cost(X, x) ≤ C/10, CostTester(X,O(x), C, δ) rejects with probability at least

1− δ.

• The sample complexity of CostTester(X,O(x), C, δ) is Õ

(
(n+n2C−2) log2 δ−1

)
.

Proof. We first upper bound the sample complexity of the algorithm. At the i-th

round, if Ci ≤ C, we take

mi|Si| = O

(
(r−2
i log(nLδ−1) · (nLri

C
)2 log(nδ−1L)

)
= Õ

(
n2C−2 log2 δ−1

)
26

many samples in this round; meanwhile if Ci > C, we take

nmi = O(nr−2
i log(nLδ−1)) = Õ((n+ nC−2) log δ−1)

(noting that ri = min{1, Ci} and Ci ≤ C1 ∈ O(max{C, 1})) many samples at this

round.

Note that we have L = Õn,C(1) many rounds in total. Therefore, the overall

sample complexity is

Õ((n+ n2C−2) log2 δ−1).

So we have proved the third argument.

We now prove the first argument, i.e., if cost(X, x) ≥ 10C then with probability

at least 1− δ the algorithm accepts. We need to prove that with probability at least

1− δ, T > C after L rounds. We first define two events, E and E ′ as follows.

Define events Eij = {ω : |(x(i)
j − x(i)) − (xj − x)| ≤ ri/2}. Note that x

(i)
j − x(i) is

a Gaussian variable with mean xj − x and variance 2
mi

. By the same argument as in

the proof of Lemma 2.1.1, we have

Pr[Eij] ≥ 1− δ

2nL
.

Let E = ∩Eij. Since i ∈ [L] and j ∈ [n], by the union bound, we have

Pr[E] ≥ 1− δ

2
. (2.3)

Define the set Mi = {j ∈ [n] : |xj − x| > 2Ci}. We also define Pi = Si ∩Mi for i

satisfying that Ci ≤ C.

For every i satisfying that Ci ≤ C, we define the event E ′i to be the inequality∣∣∣∣ n|Si| |Pi| − |Mi|
∣∣∣∣ ≤ CL−1C−1

i /8, and E ′ = ∩i:Ci≤CE ′i . By Theorem 1.4.2, we have that

Pr

(∣∣∣∣ 1

|Si|
|Pi| −

1

n
|Mi|

∣∣∣∣ > εi

)
≤ 2 exp−2|Si|ε2i

27

for εi = C
8nLCi

.

Since |Si| = O(n2L2C2
i C
−2 log(δ−1L)), we have that,

Pr[E ′i] = 1− Pr

(∣∣∣∣ n|Si| |Pi| − |Mi|
∣∣∣∣ > CL−1C−1

i /8

)
≥ 1− δ

2L
.

By the union bound, we have Pr[E ′] ≥ 1 − δ
2
. Combining with Inequality (2.3), we

have Pr[E ∩ E ′] ≥ 1− δ by the union bound.

Conditioned on E ∩ E ′, if Ci ≤ C and j ∈ Pi then |x(i)
j − x(i)| ≥ |xj − x| − |x(i)

j −

x(i) − (xj − x)| ≥ 2Ci −Ci = Ci by the triangle inequality. Hence, such entry j must

be counted in Line 9, i.e.,

Ni ≥
n

|Si|
|Pi|

E ′
≥ |Mi| − CL−1C−1

i /8.

On the other hand, if C > Ci, since the algorithm checks every xj, j ∈ [n] we know

that if j ∈Mi then j contributes one to Ni which implies that Ni ≥ |Mi|. Therefore,

we conclude that

Ni ≥ |Mi| − CL−1C−1
i /8 (2.4)

for every i, on E ∩ E ′.

We only need to prove that T > C conditioned on E ∩ E ′. As a consequence, the

algorithm accepts with probability at least 1−δ. We consider the following two cases.

1) If there is some j such that |xj − x| > 3C, then for some i ∈ [L] satisfying that

C < Ci ≤ 2C, we have

|x(i)
j − x(i)|

triangle ineq.

≥ |xj − x| − |x(i)
j − x(i) − (xj − x)|

E
> 3C − 2C = C.

Hence at the i-th round, Ni ≥ 1 which implies T ≥ Ci > C.

2) Assume that |xj−x| ≤ 3C for every j ∈ [n]. In this case, we need the following

lemma.

Lemma 2.2.3. Assume that |xj − x| ≤ 3C for every j ∈ [n]. Conditioned on E ∩ E ′,

we have that

28

cost(X, x) ≤ 2
L∑
i=1

Ci|Mi|+
C

10
.

Proof. For every j ∈ [n], let αij denote the indicator function of j ∈ Mi. Since

|xj − x| ≤ 3C < 2C1 which implies that α1j = 0, there must exist some i∗ ∈

{1, 2, . . . , L} which is the smallest number such that αij = 0. By the definition

of Mi and the fact that Ci+1 = Ci/2, we know that,

|xj − x| ≤ 2Ci∗ = 2(CL + CL + CL−1 + CL−2 + . . .+ Ci∗−1) = 2CL +
L∑
i=1

2Ciαij.

Moreover, |Mi| = αi1 + . . .+ αin. So we have

cost(X, x) =
n∑
i=1

|xj−x| ≤
n∑
j=1

(
2CL +

L∑
i=1

2Ciαij

)
= 2nCL+2

L∑
i=1

Ci|Mi| ≤
C

10
+2

L∑
i=1

Ci|Mi|,

where the last inequality is due to the fact that CL = C1

2L−1 ≤ C1

20C1n/C
= C

20n
. �

By Lemma 2.2.3, we have that,

T =
L∑
i=1

NiCi

≥
L∑
i=1

(|Mi| − CL−1C−1
i /8)Ci (Ineq. (2.4))

=
L∑
i=1

|Mi|Ci − C/8

≥cost(X, x)/2− C/20− C/8 (Lemma 2.2.3)

≥5C − C/20− C/8 (cost(X, x) ≥ 10C)

>C.

Finally, we prove the second argument, i.e., if cost(X, x) ≤ C/10, the algorithm

rejects with probability at least 1 − δ. Define sets Ri = {j ∈ [n] : |xj − x| ≥ Ci/2},

Qi = Si ∩ Ri, and events E ′′i = {ω :

∣∣∣∣ n|Si| |Qi| − |Ri|
∣∣∣∣ ≥ CL−1C−1

i /8} and E ′′ = ∩E ′′i .

Similar to the argument of E ′, we can prove that Pr[E ′′] ≥ 1−δ/2 and Pr[E∩E ′′] ≥ 1−δ.

29

To prove our second argument, we only need to show that if cost(X, x) ≤ C/10, then

T < C conditioned on E ∩ E ′′.

Conditioned on E ∩ E ′′, if Ci ≤ C, for any j /∈ Qi, we have

|x(i)
j −x(i)|

triangle ineq.

≤ |xj−x|+|(x(i)
j −x(i))−(xj−x)|

j /∈Qi and E
< Ci/2+ri/2

ri≤Ci
≤ Ci/2+Ci/2 = Ci.

It implies that xj /∈ {O(xl) ∈ Si : |x(i) − x(i)
l | ≥ Ci}. Hence we have Ni ≤ n

|Si| |Qi| in

Line 9. Consequently,

Ni ≤
n

|Si|
|Qi|

E ′′
≤ |Ri|+ CL−1C−1

i /8.

On the other hand, consider the case that Ci > C. By the same argument as the

previous case, each j /∈ Ri satisfies that |x(i)
j − x(i)| < Ci. Hence Ni ≤ |Ri| in this

case. So we conclude that, for every i ∈ [L],

Ni ≤ |Ri|+ CL−1C−1
i /8. (2.5)

Next, we need the following lemma which is similar to Lemma 2.2.3. The proof

can be found in Appendix A.

Lemma 2.2.4. Conditioned on E ∩ E ′′, we have

cost(X, x) ≥ 1

2

L∑
i=1

Ci|Ri|.

30

By Lemma 2.2.4, we have that,

T =
L∑
i=1

NiCi

≤
L∑
i=1

(|Ri|+ CL−1C−1
i /8)Ci (Ineq. (2.5))

=
L∑
i=1

|Ri|Ci + C/8

≤2cost(X, x) + C/8 (Lemma 2.2.4)

≤C/5 + C/8 (cost(X, x) ≤ C/10)

<C.

�

2.2.2 Noisy 1-Median

Now we show how to compute noisy 1-median using Algorithm 3. Our main idea is to

first sample enough arms such that there exists an O(1)-approximate center among

sampled arms. Then we design a binary search algorithm to compute the optimal

one among the sampled arms based on Algorithm CostTester, see Algorithm 4. The

estimation for the optimal arm is exactly an O(1)-approximate center.

Before analyzing Noisy1median, we first have the following lemma which shows

that O(log δ−1) sampled arms in Line 1 of Noisy1median is enough.

Lemma 2.2.5. Let X = {O(x1), . . . ,O(xn)}. If S is a uniformly i.i.d. sample of

size O(log δ−1) from X, then with probability at least 1 − δ, there exists O(x) ∈ S

such that x is a 3-approximate 1-median center on X.

Proof. Let y be the optimal 1-median center on X and let OPT =
∑n

i=1 |y − xi|.

W.l.o.g., we assume that

|x1 − y| ≤ |x2 − y| ≤ . . . ≤ |xn − y|. (2.6)

31

Algorithm 4 Noisy1median(X = {O(xj) : j = 1, 2, . . . , n}, δ)
Require: An instance X = ({O(xj) : j ∈ [n]}) and a confidence parameter δ ∈ (0, 1).
Ensure: An O(1)-approximate 1-median clustering on X and an O(1)-approximate

1-median value.
1: Uniformly draw with replacement a subset S = {O(xα1), . . . ,O(xαm)} of size
m = O(log δ−1) from X.

2: C = 100n.
3: if ∀l ∈ [m] CostTester(X,O(xαl), C,

δ
20m

) accepts then
4: For every j ∈ [n], take O(log(nδ−1)) many samples from arm O(xj) and com-

pute their average x′j.
5: Compute the optimal 1-median center x on X ′ = {x′1, x′2, . . . , x′n} by computing

their median.
6: return x and cost(X ′, x).
7: end if
8: i ← 1, j ← αl satisfying that CostTester(X,O(xαl), C,

δ
20m

) rejects in Line 3
(breaking ties arbitrarily).

9: while TRUE do
10: if ∀l ∈ [m] CostTester(X,O(xαl), C,

δ
10mi(i+1)

) accepts then

11: Take O(n2C−2 log δ−1) samples from O(xj) and return their average x and
C.

12: end if
13: j ← αl satisfying that CostTester(X,O(xαl), C,

δ
10mi(i+1)

) rejects in Line 10

(breaking ties arbitrarily).
14: C ← C/10, i← i+ 1.
15: end while

So the probability that T contains some O(xj) for j ≤ n
10

is at least

1− 0.9|T | ≥ 1− δ.

32

Suppose O(xj) ∈ S for some j ≤ n
10

. We finish the proof by noting that

n∑
l=1

|xj − xl| ≤
n∑
l=1

(|y − xl|+ |y − xj|) (triangle ineq.)

=OPT + n|y − xj|

≤OPT +
n

n− j

n∑
l=j+1

|y − xl| (Ineq. (2.6))

≤OPT +
n

n− j
OPT

≤3OPT. (j ≤ n

10
)

�

Now we are ready to prove the correctness and sample complexity of Algorithm

Noisy1median. The main theorem is as follows. Note that by the following theorem

and Theorem 2.4.1, we achieve the nearly tight sample complexity for obtaining O(1)-

approximate 1-median value in 1-dimension.

Theorem 2.2.6. Given an instance X = {O(xj) : j ∈ [n]} and a confidence parame-

ter δ ∈ (0, 1). With probability at least 1−δ, the algorithm Noisy1median(X, δ) returns

an O(1)-approximate 1-median center and an O(1)-approximate 1-median value on

X, with sample complexity

Õδ−1(n+ n2OPT−2)

where OPT = miny∈R cost(X, y) is the optimal 1-median value.

Proof. We define event E that every call of CostTester succeeds and there is a 3-

approximate 1-median center in T . By Lemmas 2.2.5 and 2.3.1 and the union bound,

we have

Pr[E] ≥ 1−m ·

(
δ

20m
+

+∞∑
i=1

δ

10mi(i+ 1)

)
− δ

4
≥ 1− δ/2.

We condition on E in what follows. For preparation, we have the following lemma.

Lemma 2.2.7. Conditioned on E, if every CostTester in Line 3 (or Line 10) accepts,

then OPT ≥ C/30 at that iteration. If OPT > 10C in Line 3 (or Line 10), then

33

every CostTester at that iteration accepts.

Proof. For the first argument, if OPT < C/30, by Lemma 2.2.5 there is a xαl ∈ S such

that cost(X, xαl) ≤ 3OPT < C/10. It means that CostTester(X,O(xαl), C, δ
′) rejects

by Lemma 2.2.2. The second argument follows from Lemma 2.2.2 since cost(X, xαl) ≥

OPT > 10C for all l ∈ [m]. �

Now we come back to the proof of Theorem 2.2.6. We consider the first ”IF”

sentence in Line 3. If all CostTester accept, we have OPT > C
30

= 10n
3

by Lemma

2.2.7. Define by event E ′ the algorithm estimates every arm xj by an empirical

mean x′j such that |xj − x′j| ≤ 1
3
. By union bound, the probability of E ′ is at least

1 − n · δ
2n

= 1 − δ/2. Conditioned on E ∩ E ′, we argue that the optimal 1-median

center x on X ′ := {x′1, x′2, . . . , x′n} is an O(1)-approximate 1-median center on X =

{x1, . . . , xn}. Assume the optimal center on X is x∗. We have the following inequality

cost(X, x) ≤cost(X ′, x) +
n∑
i=1

|xj − x′j| (triangle ineq.)

≤cost(X ′, x∗) +
n∑
i=1

|xj − x′j| (Defn. of x)

≤cost(X, x∗) +
n∑
i=1

|xj − x′j|+
n∑
i=1

|xj − x′j| (triangle ineq.)

≤OPT +
2n

3
(E ′)

≤OPT + 0.2OPT (OPT >
10n

3
)

=1.2OPT.

By the same argument, we can prove that 0.8OPT ≤ cost(X ′, x) ≤ 1.2OPT. Hence,

the output cost(X ′, x) is an O(1)-approximation of OPT. The success probability is

at least Pr[E ∩ E ′] ≥ 1− δ. Moreover, the sample complexity is

Õδ−1(n) = Õδ−1(n+ n2OPT−2)

since OPT > 10n
3

.

34

If there is some tester CostTester in Line 3 rejects, the algorithm will enter the

while-loop in Line 9. Consider the sample complexity. It is again dominated by

the number of samples of the last round since C decreases exponentially in each

round. By Lemma 2.2.7,we know that the algorithm terminates once C ≤ OPT/10.

Therefore, we have C ≥ OPT/100 when the algorithm terminates, by the updating

rule in Line 14. Since T contains only Õδ−1(1) sample access, it implies that the

sample complexity is bounded by

Õδ−1(n2OPT−2 + n),

by Lemma 2.2.2 and Line 11.

For the correctness, by Lemma 2.2.7, we know that OPT ≥ C/30 when the

algorithm terminates. Hence C is an O(1)-approximation of OPT. Note that in Line

11, xj is set to be a center such that CostTester rejects for the parameter 10C in the

previous round. Then by Lemma 2.2.2, we have cost(X, xj) ≤ 100C ≤ 3000OPT.

Hence xj is an O(1)-approximate 1-median center on X. By Line 11, the algorithm

outputs x which is the average of m = O(n2C−2 log δ−1) samples from O(xj). Hence
√
mx follows from the Gaussian distribution N(

√
mxj, Id). By union bound, we have

that |xj − x| ≤ C/n with probability at least 1− δ/2. Then we have

cost(X, x)
triangle ineq.

≤ cost(X, xj) + n|x− xj| ≤ O(1) ·OPT + C
C≤30OPT

≤ O(1) ·OPT.

Since Pr[E] ≥ 1− δ/2, the algorithm successes with probability at least 1− δ. �

2.3 A Testing-Based Algorithm for General Case:

Sharper Dependence on n

In the previous section, we present a testing-based algorithm for computing the 1-

median center/value in 1-dimension with nearly optimal sample complexity. In this

section, we extend this technique to the general setting.

35

The extension to d-dimension is straightforward. We only need a different con-

centration inequality. However, to extend to k centers is much harder since we do

not have a similar lemma as Lemma 2.2.5. A simple idea is to regard every arm as

a candidate of centers and estimate each of them to an error of OPT/n. However,

the sample complexity is still as large as n3OPT−2. To overcome this problem, we

can not consider all arms. Instead, we iteratively subsample arms and estimate the

location of subsampled arms with different sample numbers in different iterations.

We will show that the collection of estimations contain a good approximate k-median

clustering. Our approach to solving this issue is somewhat related to the ”Chaining

method” (see, e.g., [78]).

2.3.1 Testing the Total Distance from n Arms to k Centers

We first present an algorithm TestNATKP which is very similar to algorithm CostTester

except that the parameters d and k are generalized. The proof of Lemma 2.3.1 is

almost identical to the proof of Lemma 2.2.2 and can be found in Appendix A. Note

that the sample complexity in Lemma 2.3.1 saves a parameter n compared to that of

Algorithm DisNATKP.

Lemma 2.3.1. The following holds:

• If cost(X, V) > 10C then TestNATKP(X, V,C, δ) accepts with probability at least

1− δ.

• If cost(X, V) < C/10 then TestNATKP(X, V,C, δ) rejects with probability at

least 1− δ.

• The sample complexity of TestNATKP(X, V,C, δ) is Õ(d(n+ n2C−2) log2 δ−1).

2.3.2 Testing the Optimal k-Median Value

We now present Algorithm TestKemdian which tests the cost of optimal k-median on

X. It is the key algorithm in this section and can be translated to a binary search

algorithm for noisy k-median in the next subsection.

36

Algorithm 5 TestNATKP(X = {O(xi) : i = 1, 2, . . . , n}, V, C, δ)
Require: A sample access O(xi) to N(xi, Id) for every i ∈ [n], a set V of k points, a

threshold C > 0, and a confidence parameter δ ∈ (0, 1).
Ensure: “Accept” if cost(X, V) > 10C; “Reject” if cost(X, V) < C/10 where X :=
{x1, . . . , xn}.

1: C1 ← max{2C, 100}, T ← 0.
2: L← O(log(C1n/C)) such that 40C1n

C
≤ 2L < 80C1n

C
.

3: for i = 1, 2, . . . , L do
4: Ni ← 0.
5: Set ri ← min{1, Ci}, mi ← O(r−2

i (d+ log(nLδ−1))).
6: if Ci ≤ C then
7: Uniformly draw with replacement a subset Si ⊂ [n] of size

O(n2L2r2
iC
−2 log(nLδ−1)).

8: For every j ∈ Si, take mi samples from O(xj) and obtain their average x
(i)
j

as an estimate of xj.

9: Compute Ni = n
|Si|

∣∣∣∣{j ∈ Si : dist(x
(i)
j , V) ≥ Ci}

∣∣∣∣.
10: end if
11: if Ci > C then
12: for j = 1, 2, . . . , n do
13: Take mi samples from O(xj) and compute their average x

(i)
j as an estimate

of xj.

14: if minv∈V ‖x(i)
j − v‖ ≥ Ci then

15: Ni ← Ni + 1.
16: end if
17: end for
18: end if
19: T ← T +NiCi, Ci+1 ← Ci/2.
20: end for
21: return “Accept” if T > C otherwise “Reject”.

The key idea is the following: Consider the optimal k-median clustering A for

X = {O(xi) : i ∈ [n]} and partition every data point xi into the closest center a ∈ A.

This process partitions X into k clusters X1, . . . , Xk. We want to compute the center

of each cluster Xi. Similar to Noisy1median, we still sample arms to include these

candidate centers. Taking X1 as an example, our approach is based on the following

facts. If the size ofX1 is large, we only need a small number of sampled arms to include

a precise approximation of its center by Lemma 2.2.5. If the size of X1 is small, we

need many sampled arms to include a precise approximation of its center. However,

a rough estimation of the location of this center is already enough since few points

37

are clustered to it. By the above facts, we sample arms iteratively, i.e., we sample

mi (which increases exponentially) arms at the i-th round. If mi is small, we can

only expect that the sampled arms contain approximate centers for large clusters.

To estimate the locations of these subsampled arms, we need a proper number of

samples taken from each sampled arm. If mi is large, we can expect that the sampled

arms contain approximate centers for small clusters. Then we only need to take few

samples from these arms and obtain rough estimations of their locations. The key

problem is to balance the trade-off between the number of sampled arms (which are

regarded as estimations of optimal centers) and the number of samples taken from

each arm, in each iteration.

Algorithm 6 TestKmedian(X = {O(xi) : i = 1, 2, . . . , n}, k, C, δ)
Require: A sample access O(xi) for every i ∈ [n], the number of centers k, a thresh-

old C > 0 and a confidence parameter δ ∈ (0, 1).
Ensure: “Accept” if the optimal k-median value on X is larger than 10C. “Reject”

and a set of k centers if the optimal k-median value on X is smaller than C/50.
1: for i = 0, 1, 2, . . . , dlog2 ne do
2: ni ← O(n

2i
log(δ−1n)), ri ← C

100k2i
.

3: mi ← O(r−2
i (d+ log(δ−1i2ni)))

4: Uniformly draw with replacement a sample Si of size ni from [n].

5: For every j ∈ Si, take mi samples from O(xj) and compute their mean x
(i)
j as

an estimate of xj.
6: end for
7: S ← {x(i)

j : i = 1, 2, .., dlog2 ne, j ∈ Si}.
8: return “Reject” and V if there is a size-k set V ⊂ S satisfying that Test-

NATKP({O(xi) : i = 1, 2, . . . , n}, V, C, δ
|S|k) 2. Here, for all size-k sets V ⊂ S, we

use the same random samples when calling O(xi) (i ∈ [n]) in TestNATKP({O(xi) :
i = 1, 2, . . . , n}, V, C, δ

3|S|k). Otherwise “Accept”.

The main lemma is as follows.

Lemma 2.3.2. TestKmedian(X, k, C, δ) satisfies the following:

• If the optimal k-median value on X is larger than 10C, the algorithm accepts

with probability at least 1− δ.

2If there are many such sets V , output an arbitrary one.

38

• If the optimal k-median value on X is smaller than C/100, the algorithm rejects

and outputs a size-k set V satisfying that cost(X, V) ≤ 10C, with probability at

least 1− δ.

• The sample complexity is Õδ−1(d(k2n2C−2 + k2n)).

Proof. Let OPT denote the optimal k-median value on X. Define an event E1 = {ω :

∀V ⊂ S, |V | = k TestNATKP({O(xi) : i ∈ [n]}, V, C, δ
3|S|k) succeeds}. By Lemma

2.3.1 and the union bound, we know that

Pr[E1] ≥ 1−
(
|S|
k

)
· δ

3|S|k
≥ 1− δ/3.

For the first argument, assume OPT > 10C. Then for every V ⊂ S, |V | =

k we have cost(X, V) > 10C. So conditioned on E1, we know that every Test-

NATKP({O(xi) : i ∈ [n]}, V, C, δ
|S|k) accepts. Hence TestKmedian accepts in this

case.

For the second argument, assume OPT < C/100. Let V ∗ = argminV ∈Rd:|V |=kcost(X, V)

and write V ∗ = {v1, v2, . . . , vk}. Let

Vi = {xj ∈ X : dist(xj, V) = ‖xj − vi‖},

i.e., Vi is the collection of points in X which is clustered to vi (breaking ties arbitrar-

ily).

Next, we present the following generalization of Lemma 2.2.5. The proof is almost

identical and can be found in Appendix A.

Lemma 2.3.3. Assume 2l ≤ Vi < 2l+1 for some l ∈ N . Let Ai be a uniform sample

of size Θ(n log δ−1

2l
) from [n]. Then with probability at least 1− δ, there exists a j ∈ Ai

such that

cost(Vi, xj) ≤ 6cost(Vi, vi).

Now we come back to the proof of Lemma 2.3.2. For every i ∈ [k], let li be the

integer such that 2li ≤ |Vi| < 2li+1. Define event E i2 = {ω : ∃j ∈ Sli : cost(Vi, xj}) ≤

39

6cost(Vi, vi)} and let E2 = ∪ki=1E i2. By the choice of ni and Lemma 2.3.3, we have that

Pr[E2] ≥ 1− n · δ
3n

= 1− δ/3.

We also define another event E3 = {ω : ∀i = 1, 2, . . . , dlog2 ne, j ∈ Si, ‖x
(i)
j −xj‖ ≤

ri}. By Theorem 1.4.1 and the union bound, we know that

Pr[E3] ≥ 1−
logn∑
i=1

ni ·
δ

3i2ni
≥ 1− δ/3.

Let E = E1 ∩ E2 ∩ E3. Then Pr[E] ≥ 1 − δ by the union bound. It remains to prove

that conditioned on E , the algorithm rejects.

For every vi ∈ V ∗, let ji ∈ Sli denote the index such that cost(Vi, xji) ≤ 6cost(Vi, vi)}.

(ji must exist since we condition on E .)

Now we show that P := {x(li)
ji

: i = 1, 2, . . . , k} is indeed a constant factor approx-

imate k-median clustering. Indeed,

cost(X,P) ≤
k∑
i=1

cost(Vi, x
(li)
ji

) (Defn. of cost)

≤
k∑
i=1

cost(Vi, xji) + |Vi|‖xji − x
(li)
ji
‖ (triangle ineq.)

≤6
k∑
i=1

cost(Vi, vi) + |Vi| · rli (Defn. of xji and E)

≤6OPT +
k∑
i=1

2li+1 · C

100k2li
(|Vi| ≤ 2li+1 and Defn. of rli)

≤6C/100 +
C

50
(OPT < C/100)

=
4

50
C < C/10.

Recall that we condition on E . Hence TestNATKP({O(xi) : i ∈ [n]}, P, C, δ
|S|k)

rejects by Lemma 2.3.2. So we conclude that TestKmedian rejects when OPT <

C/100. Moreover, note that the output V satisfies that TestNATKP({O(xi) : i ∈

[n]}, V, C, δ
|S|k) rejects. By Lemma 2.3.2, we have cost(X, V) ≤ 10C.

40

Finally, we consider the sample complexity. There are two places involving taking

samples from the oracles: Line 5 and Line 8. For Line 5, the sample complexity is

upper bounded by

Õδ−1(

dlog2 ne∑
i=1

nir
−2
i d) = Õδ−1(

dlog2 ne∑
i=1

k2n2iC−2d) = Õδ−1(dk2n2C−2).

For Line 8, the sample complexity is bounded by a single call of TestNATKP({O(xi) :

i = 1, 2, . . . , n}, V, C, δ
|S|k) since we use the same samples over all V . By Lemma 2.3.2,

the sample complexity is

Õ(d(n2C−2 + n) log2 |S|k) = Õδ−1(dk2(n2C−2 + n)).

So the total sample complexity is upper bounded by

Õδ−1(dk2(n2C−2 + n)).

�

2.3.3 Noisy k-Median

Now we are ready to design a simple binary search algorithm based on TestKmedian.

The idea is straightforward – to guess the optimal k-median value iteratively and

apply TestKmedian to test the guess.

We summarize the main theorem as follows. The proof is very similar to the proof

of Theorem 2.2.6 and can be found in Appendix A.

Theorem 2.3.4. With probability at least 1 − δ, NoisyKmedian2(X, k, δ) outputs an

O(1)-approximate k-median clustering and an O(1)-approximate k-median value on

X, with sample complexity

Õδ−1(dk2(n2OPT−2 + n))

41

Algorithm 7 NoisyKmedian2(X = {O(xi) : i = 1, 2, . . . , n}, k, δ)
Require: A sample access O(xi) for every i ∈ [n], the number of centers k, a confi-

dence parameter δ ∈ (0, 1).
Ensure: An O(1)-approximate k-median clustering on X and an O(1)-approximate

k-median value.
1: C ← 1000n, i← 1.
2: If TestKmedian({O(xi) : i = 1, 2, . . . , n}, k, C, δ/20) accepts then
3: return NoisyKmedian({O(xi) : i = 1, 2, . . . , n]}, δ/10).
4: while TRUE do
5: if TestKmedian({O(xi) : i = 1, 2, . . . , n}, k, C, δ

10i(i+1)
) rejects then

6: return V which is the output of TestKNATKP({O(xi) : i =
1, 2, . . . , n}, k, C, δ

10i(i+1)
) and C.

7: end if
8: C ← C/10, i← i+ 1.
9: end while

where OPT is the optimal k-median value on X.

2.4 Lower Bound

We discuss the sampling lower bound of the noisy k-median problem in this section.

We will consider both the instance lower bound and the worst-case lower bound.

2.4.1 Instance Lower Bound

We first consider the instance lower bound for the noisy k-median problem. Recall

that in a noisy k-median instance, we are given sample access to n uncertain points

{O(xi) : i ∈ [n]}. The following theorem gives an instance sampling lower bound for

the noisy 1-median clustering which shows the tightness of Theorem 2.2.6.

Theorem 2.4.1. For any noisy 1-median instance in Rd, assume that the optimal

1-median value is OPT. Then any (1−δ)-correct algorithm with approximation factor

2 takes at least Ω(n2OPT−2 ln δ−1 + n) samples in expectation.

Proof. Assume the n Gaussian distributions for {O(xi) : i ∈ [n]} are N(xi, Id), i ∈ [n].

W.l.o.g., we assume that the optimal solution of the given instance is v = (0, 0, . . . , 0).

42

We first show an Ω(n) lower bound, which is relatively easy. Suppose for contra-

diction that a (1 − δ)-correct algorithm A takes o(n) samples in expectation. Now,

suppose we pick an arm xi uniformly at random, and replace xi with an arm a with

center extremely far from v. Then clearly OPT would be dominated by ‖a‖ and thus

change dramatically. But A can only detect this change with o(1) probability, since

it can touch at most o(n) arms. Therefore, A cannot be (1 − δ)-correct with o(n)

samples.

Next we prove an Ω(n2OPT−2 ln δ−1) lower bound. Suppose for contradiction

that an algorithm A takes o(n2OPT−2 ln δ−1) samples in expectation. Let τi be the

expected number of samples taken from the i-th arm. For convenience, we define

O = OPT =
N∑
i=1

‖xi‖.

We construct another sequence of Gaussian distributions N(ui, Id) as follows. For

each i, we set ui such that ui = xi + 2O
N
· xi
‖xi‖ . Recall that v = (0, 0, . . . , 0) is the

optimal 1-median solution of {xi}. By fixing a coodinate j ∈ [d], we know that the

median value of all xi,j (the j-th entry of xi) must be 0. By the definition of ui, it is

not hard to see that the median value of all ui,j (the j-th entry of ui) is 0 for any fixed

coordinate j ∈ [d]. Thus, the optimal 1-median center of the instance {ui} is still

v = (0, 0, . . . , 0). We conclude that the optimal 1-median value of {ui} is
∑N

i=1 ‖ui‖.

Note that we have

N∑
i=1

‖ui‖ − ‖xi‖ =
N∑
i=1

‖ui − xi‖ =
N∑
i=1

2O

N
= 2O.

Therefore, we have
N∑
i=1

‖ui‖ = 3O.

Let C denote the original sequence of arms, and C ′ denote the sequence of arms

corresponding to ui. We also let E be the event that A outputs a value at most O.

Note that if E happens, A can not output a 2-approximation solution for {ui}i∈[n].

43

Clearly, by the assumption of A, we have

Pr
A,C

[E] ≥ 1− δ and Pr
A,C′

[E] ≤ δ.

Now we apply Lemma 1.4.3 and Equality (1.2), and we have

N∑
i=1

τi ·
1

2
· ‖xi − ui‖2 ≥ d

(
Pr
A,C

[E], Pr
A,C′

[E]

)
≥ Ω(ln δ−1).

Since
N∑
i=1

τi ·
1

2
· ‖xi − ui‖2 =

N∑
i=1

τi ·
1

2
· 4O2

n2
=

2O2

n2
·
N∑
i=1

τi,

we have
N∑
i=1

τi ≥ n2 · ln δ−1/2O2,

which completes the proof. �

By letting ui = xi +
(1+ε)O
N
· xi
‖xi‖ in the above proof, we directly have the following

corollary.

Corollary 2.4.2. For any noisy 1-median instance in Rd, assume that the optimal

1-median value is OPT. Then any (1−δ)-correct algorithm with approximation factor

1 + ε takes at least Ω(ε−2n2OPT−2 ln δ−1 + n) samples in expectation for any ε > 0.

For the general case, we have the following theorem.

Theorem 2.4.3. For any noisy 1-median instance in Rd, assume the optimal k-

median clustering is V = {v1, . . . , vk} and the optimal k-median value is OPT. If for

any pair vi, vj ∈ V , we have ‖vi−vj‖ > 6OPT. Then any (1−δ)-correct algorithm with

approximation factor 2 takes at least Ω(n2OPT−2 ln δ−1 + n) samples in expectation.

Proof. We first show an Ω(n) lower bound. Suppose for contradiction that a (1− δ)-

correct algorithm A takes o(n) samples in expectation. Now, suppose we pick an arm

xi uniformly at random, and replace xi with an arm a extremely far from the rest

arms. Then clearly the optimal k-median clustering of this modified instance should

44

include a. But A can only detect this change with o(1) probability, since it can touch

at most o(n) arms. Therefore, A cannot be (1− δ)-correct with o(n) samples.

The proof of an Ω(n2 · ln δ−1/OPT2) lower bound is similar to Theorem 2.4.1. The

optimal solution V partitions {xi} into different clusters according to their distance to

V . W.l.o.g., assume x1, x2, . . . , xm are points satisfying that v1 = arg minv∈V ‖xi− v‖

(1 ≤ i ≤ m). We construct another sequence of Gaussian distributions N(ui, Id) as

follows. For each 1 ≤ i ≤ m, we set ui such that ui = xi+
2OPT
n
· xi−v1
‖xi−v1‖ . Observe that

‖ui − v1‖ = ‖xi − v1‖+ 2OPT/n. For other clusters, we construct ui respectively.

We first show that V is still the optimal k-median clustering of {ui}. Assume V ∗

is the optimal k-median clustering of {ui}. Again, V ∗ partitions {ui} into different

clusters. We claim that each cluster of {ui} according to V ∗ corresponds to a cluster

of {xi} according to V . Note that

n∑
i=1

min
v∈V
‖ui − v‖ ≤

n∑
i=1

min
v∈V
‖xi − v‖+ n · 2OPT/n = 3OPT. (2.7)

W.l.o.g., suppose there exists two points x1 and x2 belong to different clusters accord-

ing to V , while u1 and u2 belong to the same cluster v∗ according to V ∗. W.l.o.g.,

assume that the closest point in V for x1 and x2 are v1 and v2 respectively. Then by

the triangle inequality and the assumption that ‖v1 − v2‖ > 6OPT, we have

‖u1−u2‖ > ‖v1−v2‖−‖v1−x1‖−‖x1−u1‖−‖v2−x2‖−‖x2−u2‖ > 6OPT−OPT−4OPT/n > 3OPT.

It implies that

n∑
i=1

min
v∈V
‖ui−v‖

Defn. of V ∗

≥
n∑
i=1

min
v∈V ∗
‖ui−v‖ ≥ ‖u1−v∗‖+‖u2−v∗‖

triangle ineq.

≥ ‖u1−u2‖ > 3OPT,

which is a contradiction with Inequality (2.7). Thus, x1 and x2 belong to different

clusters according to V , then u1 and u2 must belong to different clusters according

to V ∗. It implies that each cluster of {xi} according to V corresponds to at least one

cluster of {ui} according to V ∗. However, we have |V ∗| = |V | = k. Thus, each cluster

45

of {ui} according to V ∗ corresponds to a cluster of {xi} according to V .

Then by the same argument as in Theorem 2.4.1, we can prove that V ∗ = V .

Finally, since the partition of {ui} remains the same, we have

n∑
i=1

min
v∈V
‖ui − v‖ =

n∑
i=1

min
v∈V
‖xi − v‖+ n · 2OPT/n = 3OPT.

By the same argument as in Theorem 2.4.1, we know that any (1−δ)-correct algorithm

with approximation factor 2 takes at least Ω(n2OPT−2 ln δ−1) samples in expectation

to distinguish {xi} and {ui}. It completes the proof. �

2.4.2 Worst-Case Lower Bound

Now we prove a worst-case lower bound of the noisy k-median problem. Precisely, we

show that there exists a family of noisy k-median instances where Ω(n+
√
dn2OPT−2)

samples are required for any 0.9-correct algorithm. This result shows that the factor
√
d is also necessary in the upper bound. We first need the following lemma for

preparation.

Lemma 2.4.4. There is no 0.9-correct algorithm that takes o(
√
d/ε2) samples in

expectation from an d-dimensional Gaussian N(µ, Id) distinguishes between the cases

1. µ = 0

2. ‖µ‖ > ε.

Proof. Note that this lemma is very similar to Theorem C.2 in [36]. 3 The only

difference is that we consider the number of samples in expectation.

Suppose for sake of contradiction that such an algorithm exists. If the probability

that it distinguishes the two cases with o(
√
d/ε2) samples is larger than 1/3. Then

by Theorem C.2 in [36], we have that the accuracy of this algorithm is less than

1 − 1/3 × 1/3 = 8/9, which is a contradiction. Otherwise, the algorithm takes

3The proof of Theorem C.2 in [36] has a mistake. The last equality should be ‖Σ − I‖2F =
nk2(2ε2/n)2 = 4k2ε4/n = o(1). However, it does not affect the correctness of the theorem.

46

Ω(
√
d/ε2) samples with probability at least 2/3. Then the algorithm takes Ω(

√
d/ε2)

samples in expectation, which is also a contradiction. �

We are ready to prove the following theorem.

Theorem 2.4.5. There exists an infinite sequence of noisy k-median instances, such

that any 0.9-correct algorithm for any instance with approximation factor 2 takes at

least

Ω(
√
dn2OPT−2 + n)

samples in expectation. Here, OPT is the optimal k-median value.

Proof. Consider the following sequence of (2n + 2)-arms C = (a0 = N(x0, Id), b0 =

N(y0, Id), a1 = N(x1, Id), b1 = N(x1, Id), . . . , an = N(xn, Id), bn = (xn, Id)) satisfying

the following property:

1. ‖y0 − x0‖ =
√
n.

2. The distance between any xi and xj (0 ≤ i < j ≤ n) is far away enough, say

2n
2
.

Let k = n + 1. Assume that A is a 0.9-correct algorithm with approximation factor

2. By the same argument as in Lemma 2.4.3, A must take Ω(n) samples in expecta-

tion. Then suppose for sake of contradiction that A takes o(
√
dn2OPT−2) samples in

expectation. Let V = {x0, x1, . . . , xn}. Observe that the optimal k-median value of C

is exactly OPT =
∑n

i=0 minv∈V ‖yi − v‖ =
√
n. Thus, A(C) outputs a value at most

2
√
n with probability at least 0.9.

Construct another sequence of (2n+2) independent arms C ′ = (a′0 = N(x0, Id), b
′
0 =

N(y0, Id), a
′
1 = N(x1, Id), b

′
1 = N(x1 + ξ, Id), . . . , a

′
n = N(xn, Id), b

′
n = (xn + ξ, Id)).

Here, ξ ∈ Rd satisfies that 1/
√
n < ‖ξ‖ ≤ 2nd. In this case, the optimal k-median

value of C ′ is exactly OPT′ =
∑n

i=0 minv∈V ‖yi − v‖ > 2
√
n. Thus, A(C ′) outputs a

value larger than 2
√
n with probability at least 0.9.

Now we construct an algorithm Â to distinguish the two cases in Lemma 2.4.4:

µ = 0 or ‖µ‖ > 1/
√
n. Firstly, Â take 1 sample x. If ‖x‖ > nd, output ‖µ‖ > ε.

47

Otherwise, Â construct a (2n+ 2)-arm instance as follows: Ĉ = (â0 = N(x0, Id), b̂0 =

N(y0, Id), â1 = N(x1, Id), b̂1 = N(x1 + µ, Id), . . . , ân = N(xn, Id), b̂n = (xn + µ, Id)).

Let V = {x0, x1, . . . , xn}. We obtain a noisy (n+ 1)-median instance.

Run algorithm A on this instance. This can be done by the following simulation.

If A wants to take a sample from arm âi (0 ≤ i ≤ n) or arm b̂0, Â directly draws a

sample from the corresponding Gaussian distribution. If A wants to take a sample

from arm b̂i (1 ≤ i ≤ n), Â draws a sample y from the unknown distribution N(µ, Id),

and produces y+ xi as a sample drawn from arm b̂i. If A(Ĉ) outputs a value at most

2
√
n, then Â outputs ‖µ‖ = 0. Otherwise if A(Ĉ) outputs a value larger than 2

√
n,

then Â outputs ‖µ‖ > 1/
√
n. Note that Â only takes o(n2

√
d/
√
n

2
) = o(n

√
d) samples

in expectation.

It remains to prove that the correctness of Â is at least 0.9. Then by Lemma 2.4.4,

Â must take Ω(n
√
d) in expectation which leads to a contradiction and finishes the

proof. Firstly, if ‖µ‖ > 2nd, then with probability 0.99, A take a sample x with ‖x‖ >

nd and successfully distinguish the two cases. Otherwise if 1/
√
n < ‖µ‖ ≤ 2nd, A(Ĉ)

will output a value larger than 2
√
n with probability at least 0.9 by the assumption

of A. Finally, if µ = 0, A(Ĉ) will output a value at most 2
√
n with probability at

least 0.9. Thus, Â can distinguish the two cases with success probability at least 0.9,

which is a contraction. �

48

Chapter 3

Robust Coreset and Property

Testing

In this Chapter, we consider robust coresets for the (k, z)-clustering problem with

outliers (see Definition 1.2.2). We generalize and improve the prior result [39] for Eu-

clidean space, and prove the existence of robust coresets with smaller size in doubling

metrics. The following is the main theorem of this Chapter.

Theorem 3.0.6. Let M(X, d) be a doubling metric space (a d-dimensional Euclidean

space resp.). Suppose S is a uniform independent sample of Γ (Γ′ resp.) points from

X, where

Γ = O

(
k

α2
(ddim(M) · log(z/ε) + log k + log log(1/τ)) +

log(1/τ)

α2

)

and

Γ′ = O

(
1

α2
(kd log k + log(1/τ))

)
.

Then with probability at least 1− τ , S is an (α, ε)-robust coreset ((α, 0)-robust coreset

resp.) for the (k, z)-clustering problem with outliers.

49

3.1 Approximation to Robust Coreset

Our main idea is to construct an ε-approximation and show that an ε-approximation

for the range space already induces a robust coreset. We consider the functional

representation of the problem as follows:

Definition 3.1.1 (Robust Coreset for a Set of Functions). Assume 0 < α, ε < 1
4
. Let

G be a finite set of functions [X]k → R≥0. For any 0 < γ < 1, C ∈ [X]k and S ⊆ G,

let

S−γ(C) := min
S′⊆S:|S′|=d(1−γ)|S|e

∑
g∈S′

g(C),

which is the sum of the smallest d(1 − γ)|S|e values g(C). Then a subset S ⊆ G is

called an (α, ε)-robust coreset of G if for any α < γ < 1− α and C ∈ [X]k,

(1− ε) · G
−(γ+α)(C)

|G|
≤ S

−γ(C)

|S|
≤ (1 + ε) · G

−(γ−α)(C)

|G|
. (3.1)

Remark 3.1.2. To reduce the problem of constructing a robust coreset for clustering

to the problem for functions, for x ∈ X, let gx(·) be a function from [X]k to R≥0 such

that gx(C) = dz(x,C). Let G := {gx | x ∈ X}.

We note that our definition is slightly different from that in [39, Definition 8.1] 1.

In particular, in Euclidean spaces, one can check that an (εγ/4, 0)-robust coreset is

a (γ, ε)-coreset in [39, Definition 8.1].

Next, we prove the following simple connection between α-approximation of (G, ranges(G))

and robust coreset of G in Lemma 3.1.4. This lemma improves [39, Theorem 8.3] in

which they show that an (ε2γ/63)-approximation is a (γ, ε)-coreset2. First we need

the following simple formulas.

Claim 3.1.3. For any γ ∈ (α, 1− α) and C ∈ [X]k, the following equations hold:

1In fact, our definition is more general. It is unclear whether their result applies to our definition.
2Consider the (γ, ε)-coreset in [39, Definition 8.1]. Since an (εγ/4, 0)-robust coreset is a (γ, ε)-

coreset, our Lemma 3.1.4 implies that an (εγ/8)-approximation is a (γ, ε)-coreset.

50

S−γ(C)

|S|
=

∫ ∞
0

(
d(1− γ)|S|e
|S|

− |S ∩ range(G, C, r)|
|S|

)
+

dr, (3.2)

G−(γ+α)(C)

|G|
=

∫ ∞
0

(
d(1− γ − α)|G|e

|G|
− |range(G, C, r)|

|G|

)
+

dr, (3.3)

G−(γ−α)(C)

|G|
=

∫ ∞
0

(
d(1− γ + α)|G|e

|G|
− |range(G, C, r)|

|G|

)
+

dr. (3.4)

Proof. We only proof the first one. The other two Equations (3.3) and (3.4) can be

proved in the same manner. Let D be the collection of functions g ∈ S with the

smallest d(1− γ)|S|e values g(C). Using integration, we know that

S−γ(C)

|S|
=

∫ ∞
0

∣∣{g(C) > r | g ∈ D}
∣∣

|S|
dr.

By definition, we have

∣∣{g(C) > r | g ∈ D}
∣∣

|S|
=
|D \ range(G, C, r)|

|S|
=

(
|D| − |S ∩ range(G, C, r)|

)
+

|S|

=

(
d(1− γ)|S|e
|S|

− |S ∩ range(G, C, r)|
|S|

)
+

,

which proves Equation (3.2). �

Lemma 3.1.4. If S is an α
2

-approximation of (G, ranges(G)) such that |S|, |G| ≥ 2/α,

then S is an (α, 0)-robust coreset of G.

Proof. Let S ⊆ G be an α-approximation of (G, ranges(G)). We prove S is also an

(α, 0)-robust coreset of G. Since S is an α
2
-approximation of G, for any C ∈ [X]k and

r ≥ 0, ∣∣∣∣ |range(G, C, r)|
|G|

− |S ∩ range(G, C, r)|
|S|

∣∣∣∣ ≤ α

2
. (3.5)

51

So we have that(
d(1− γ − α)|G|e

|G|
− |range(G, C, r)|

|G|

)
+

≤
(
d(1− γ − α)|G|e

|G|
+
α

2
− |S ∩ range(G, C, r)|

|S|

)
+

≤
(

(1− γ − α)|G|+ 1

|G|
+
α

2
− |S ∩ range(G, C, r)|

|S|

)
+

=

(
(1− γ)|S|
|S|

− α

2
+

1

|G|
− |S ∩ range(G, C, r)|

|S|

)
+

≤
(
d(1− γ)|S|e
|S|

− |S ∩ range(G, C, r)|
|S|

)
+

The first inequality holds due to Inequality (3.5) and the last follows because |G| ≥

2/α.

Together with (3.2) and (3.3), we have that

G−(γ+α)(C)

|G|
≤ S

−γ(C)

|S|
.

Similarly, by (3.2), (3.4) and (3.5), we can also show that

S−γ(C)

|S|
≤ G

−(γ−α)(C)

|G|
,

which completes the proof. �

In the d-dimensional Euclidean space, one can utilize a (γε/8)-approximation to

construct a (γ, ε)-coreset of [39, Definition 8.1]. Using the improved Lemma 3.1.4, we

can improve the robust coreset size in [39, Definition 8.1] from O(kd log k · γ−2ε−4) 3

to O(kd log k · γ−2ε−2).

Proof. (proof of Theorem 3.0.6) For the Euclidean space Rd, by [69], we can construct

an α
2
-approximation of G defined as in Remark 3.1.2, by taking O(kd log k

α2) uniform

samples from X. Then by Lemma 3.1.4, we complete the proof for the Euclidean

space.

Since dealing with doubling metrics requires more involved techniques which are

3The size stated in [39] is O(kdγ−2ε−4). We defer interesting readers to [9, Section 5] to see why
an additional log k factor is required.

52

less relevant with this paper. We omit all the details here but refer the interested

readers to our paper [58, Section 6.2.1]. �

3.2 Application to Property Testing

In this section, we show some applications of robust coreset to property testing. We

start with the following definition that captures the notion of bi-criteria algorithms.

Definition 3.2.1. Let M(X, d) be a metric space. Let λ ≥ 1, 0 < α < 1/4 and α <

γ < 1 − α. We say A is a (λ, γ, α)-approximation algorithm for the (k, z)-clustering

problem with outliers, if A returns a number Λ such that minC∈[X]k K
−(γ+α)
z (X,C) ≤

Λ ≤ λ ·minC∈[X]k K
−(γ−α)
z (X,C).

Theorem 3.2.2 (Testing of (k, z)-clustering). Let M(X, d) be a doubling metric space

(d-dimensional Euclidean space resp.). Let λ ≥ 1, 0 < α < 1/4 and α < γ < 1 − α.

Suppose there is a (λ, γ, α)-approximation algorithm for the (k, z)-clustering problem

with outliers, which runs in time T (|X|, λ, γ, α). Then for any ∆ > 0 and 0 < ε <

1/4, there is an algorithm satisfying

1. if minC∈[X]k K
−(γ−α)
z (X,C) ≤ ∆, it accepts with probability 1− τ ;

2. if minC∈[X]k K
−(γ+α)
z (X,C) ≥ λ(1 + ε) ·∆, it rejects with probability 1− τ ,

with running time T (Γ, γ, λ, α
2
) + Γ2, where

Γ := O

(
k

α2
(ddim(M) · log(z/ε) + log k + log log(1/τ)) +

log(1/τ)

α2

)

for doubling metrics and

Γ := O

(
1

α2
(kd log k + log(1/τ))

)

for d-dimensional Euclidean space.

Proof. Consider the following algorithm:

53

1. Take a uniformly independent sample S of size Γ from X.

2. Run the (λ, γ, α
2
)-approximation algorithm on S. Suppose the output is Γ.

3. Accept if Γ ≤ (1+ε/4)λΓ
|X| ·∆, and reject otherwise.

By Theorem 3.0.6, with probability at least 1 − τ , S is an (α
2
, ε

4
)-robust coreset

for X 4. In the following, we condition on the event that S is an (α
2
, ε

4
)-robust coreset

for X. Hence, for any C ∈ [X]k and α < γ < 1− α, we have

(1− ε/4) · K
−(γ+α

2
)

z (X,C)

|X|
≤ K

−γ
z (S,C)

|S|
≤ (1 + ε/4) · K

−(γ−α
2

)
z (X,C)

|X|
. (3.6)

Recall that Λ is the output of the (λ, α
2
)-approximation algorithm. Then by Defi-

nition 3.2.1 and Inequality (3.6), we have

Λ < λ · min
C∈[X]k

K−(γ−α
2

)
z (S,C) ≤ (1 + ε/4)λΓ

|X|
· min
C∈[X]k

K−(γ−α)
z (X,C), (3.7)

and

Λ ≥ min
C∈[X]k

K−γz (S,C) ≥ (1− ε/4)Γ

|X|
· min
C∈[X]k

K−(γ+α)
z (X,C) (3.8)

If minC∈[X]k K
−(γ−α)
z (X,C) ≤ ∆, we have Γ ≤ (1+ε/4)λΓ

|X| ·∆ by Inequality (3.7). In

this case, our algorithm accepts. On the other hand, if minC∈[X]k K
−(γ+α)
z (X,C) ≥

λ(1 + ε) ·∆, we have

Γ
Ineq. (3.8)

≥ (1− ε/4)Γ

|X|
· λ(1 + ε) ·∆ >

(1 + ε/4)λΓ

|X|
·∆.

In this case, our algorithm rejects. It completes the proof. �

Remark 3.2.3. The (λ, γ, α)-approximation algorithm for the (k, z)-clustering problem

with outliers is used as a subroutine in our testing algorithm. If we use exhaustive

search, we obtain a (1, γ, 0)-approximation algorithm with running time exponential

4Recall that in Euclidean space, S is actually an (α2 , 0)-robust coreset, but the weaker property
is sufficient here.

54

in |S| for (k, z)-clustering with outliers. If we use the approximation algorithm by

Charikar et al. [27], we have a (4(1 + λ−1), γ, λγ)-approximation algorithm with

polynomial running time for the (k, 1)-clustering problem with outliers.

55

56

Appendix A

Missing Proofs

Proof of Lemma 2.1.2. Let v∗j = argminv∈V ‖xj−v‖ where ties are broken arbitrarily.

Suppose ri ≤ dist(xj, V)/12. Observe that at the i-th round, we have

djv = min
y∈B(x

(i)
j ,3ri)

‖y − v‖ = max{0, ‖x(i)
j − v‖ − 3ri} ≥ ‖x(i)

j − v‖ − 3ri

triangle ineq.

≥ ‖xj − v‖ − ‖x(i)
j − xj‖ − 3ri

ri≤dist(xj ,V)/12 and E
≥ 12ri − ri − 3ri = 8ri > 0.

Also note that

cjv∗j = max
y∈B(x

(i)
j ,3ri)

‖y − v∗j‖ = ‖x(i)
j − v∗j‖+ 3ri

≤‖xj − v∗j‖+ ‖xj − x(i)
j |2 + 3ri (triangle ineq.)

≤‖xj − v∗j‖+ 4ri (E)

=dist(xj, V) + 4ri,

and for every v 6= v∗j

djv = min
y∈B(x

(i)
j ,3ri)

‖y − v‖ = max{0, ‖x(i)
j − v‖ − 3ri}

≥ ‖xj − v‖ − ‖xj − x(i)
j ‖ − 3ri

≥ dist(xj, V)− 4ri.

57

Hence we have

cjv∗j
djv
≤ dist(xj, V) + 4ri

dist(xj, V)− 4ri
≤ 12ri + 4ri

12ri − 4ri
= 2,

which implies that the ”IF” sentence in Line 9 is satisfied. Hence flag(j) has been set

to be ”TRUE” at the i-th round.

On the other hand, if ri > dist(xj, V)/2, we have that

‖x(i)
j −v∗j‖

triangle ineq.

≤ ‖xj−x(i)
j ‖+‖xj−v∗j‖

E
≤ ri+dist(xj, V)

ri>dist(xj ,V)/2

< ri+2ri = 3ri.

It means that v∗j ∈ B(x
(i)
j , 3ri) which implies that djv∗j = 0. Hence Line 9 is not

satisfied which implies that flag(j) remains “FALSE” at this round.

Consequently, if flag(j) is set to be “TRUE” at the i-th round of the while-loop,

we have ri ≤ dist(xj, V)/2. Hence

dist(x
(i)
j , V)

triangle ineq.

≤ dist(xj, V)+‖x(i)
j −xj‖

E
≤ dist(xj, V)+ri

ri≤dist(xj ,V)/2

≤ 3

2
dist(xj, V)

and

dist(x
(i)
j , V)

triangle ineq.

≥ dist(xj, V)−‖x(i)
j −xj‖

E
≥ dist(xj, V)−ri

ri≤dist(xj ,V)/2

≥ 1

2
dist(xj, V),

which complete the proof. �

Proof of Lemma 2.1.4. Suppose E happens and ri <
OPT
200n

in Line 3 of the i-th round.

Then ri−1 < 0.01OPT/n and ri−2 < 0.02OPT/n.

Let OPT1 denote the optimal k-median value on Xi−1 = {x(i−1)
j : j = 1, 2, . . . , n}.

Since Ai−1 is the output of BPRS(N, k, d,Xi−1), by optimality, we know that,

C
(i−1)
2 = cost(Xi−1, Ai−1) ≥ OPT1.

58

By the triangle inequality, we have

OPT1 ≥ OPT−
n∑
j=1

‖xj−x(i−1)
j ‖

E
≥ OPT−n ·ri−1

ri−1<
OPT
100n

≥ OPT− OPT

100
= 0.99OPT.

Let OPT2 be the optimal k-median value on Xi−2 = {x(i−2)
j : j = 1, 2, . . . , n}.

Since Ai−2 is the output of BPRS(N, k, d,Xi−2), we know that,

C
(i−2)
2 = cost(Xi−2, Ai−2) ≤ αOPT2 < 6OPT2.

By the triangle inequality, we have

OPT2 ≤ OPT+
n∑
j=1

‖xj−x(i−2)
j ‖

E
≤ OPT+n·ri−2

ri−2<
OPT
50n

≤ OPT+0.02OPT = 1.02OPT.

Hence C
(i−1)
2 ≥ 0.99OPT and C

(i−2)
2 ≤ 6× 1.02OPT = 6.18OPT.

Now consider C
(i−1)
1 . Conditioned on E , we have

C
(i−1)
1 =DisNATKP({O(xi−1) : i = 1, 2, . . . , N}, Ai−2,

δ

100(i− 1)2
)

≤3

2
cost(X,Ai−2) (Lemma 2.1.1)

≤3

2
(cost(Xi−2, Ai−2) +

n∑
j=1

‖xj − x(i−2)
j ‖) (triangle ineq.)

≤3

2
(C

(i−2)
2 + nri−2) (E)

≤9.18OPT + 0.03OPT = 9.21OPT. (ri−2 <
OPT

50n
)

Hence C
(i−1)
1 /C

(i−1)
2 ≤ 9.21

0.99
< 10. It means that the algorithm terminates at the

(i− 1)-th round or before which is a contradiction with the assumption that the last

round is i. Therefore, we have ri ≥ OPT
200n

in Line 3 of the i-th round.

In Line 4, observe that ri is set to be
C

(i)
1

80n
if ri ≥ C

(i)
1

80n
. However, it does not make

ri <
OPT
200n

since C
(i)
1

Lemma 2.1.1

≥ 2
5
cost(X,Ai−1) ≥ 2

5
OPT. Overall, ri ≥ OPT

200n
. �

Proof of Lemma 2.2.4. For every j ∈ [n], let βij denote the indicator function of

59

j ∈ Ri. Fix a j ∈ [n], let i∗ be the smallest number such that βij = 1. If such i∗

exists, by the definition of Ri and the fact that Ci+1 = Ci/2, we have

|xj − x| ≥ Ci∗/2 >
1

2
(Ci∗ + Ci∗+1 + . . .+ CL) =

1

2

L∑
i=1

βijCi.

Otherwise if such i∗ does not exist, we have β1j = . . . = βLj = 0. Hence we have

|xj − x| ≥ 0 =
1

2

L∑
i=1

βijCi.

Thus, we always have |xj − x| ≥ 1
2

∑L
i=1 βijCi. Moreover, |Ri| = βi1 + βi2 + . . .+ βiL.

So we have,

cost(X, x) =
n∑
i=1

|xj − x| ≥
n∑
j=1

1

2

(
L∑
i=1

Ciβij

)
=

1

2

L∑
i=1

Ci|Ri|.

�

Proof of Lemma 2.3.1. We first bound the sample complexity of our algorithm. Re-

call that ri = min{1, Ci} and Ci ≤ C1 = O(max{1, C}).

At the i-th round, if Ci ≤ C, we take

mi|Si| = O(r−2
i (d+ log(nLδ−1)) · n2L2r−2

i C−2 log(nLδ−1)) = Õ(dn2C−2 log2 δ−1)

many samples. If Ci > C, we take

nmi = O(nr−2
i (d+ log(nLδ−1))) = Õ(d(n+ nC−2) log δ−1)

many samples.

Note that we have L = Õn,C(1) many rounds in total. So the sample complexity

is upper bounded by

Õ(d(n+ n2C−2) log2 δ−1),

which proves our third claim.

60

Then we prove our first claim, i.e., if cost(X, V) > 10C then the algorithm accepts

with probability at least 1− δ. We first define two events E and E ′ as follows.

Define event Eij = {ω :
∥∥x(i)

j − xj
∥∥ ≤ ri/2} for i ∈ [L] and j ∈ [n]. By the same

proof as in Lemma 2.1.1, we have

Pr[Eij] ≥ 1− δ

2nL
.

Let E = ∩i∈[L],j∈[n]Eij. Then by the union bound, we have Pr[E] ≥ 1 − nL · δ
2nL

=

1− δ/2.

Let Mi = {j ∈ [n] : dist(xj, V) > 2Ci} and let Pi = Si∩Mi. For every i satisfying

that Ci ≤ C, we define event

E ′i = {ω :

∣∣∣∣ n|Si| |Pi| − |Mi|
∣∣∣∣ ≤ CL−1C−1

i /8},

and E ′ = ∩i:Ci≤CE ′i .

Since |Si| = O(n2L2C2
i C
−2 log(δ−1L)), by Theorem 1.4.2, we have that

Pr[E ′i] = 1− Pr

(∣∣∣∣ n|Si| |Pi| − |Mi|
∣∣∣∣ > CL−1C−1

i /8

)
≥ 1− δ

2L
.

Hence Pr[E ′] ≥ 1 − L · δ
2L

= 1 − δ/2. Combining with the conclusion that Pr[E] ≥

1− δ/2, we have Pr[E ∩ E ′] ≥ 1− δ by the union bound.

We only need to prove that T > C conditioned on E ∩ E ′ since it implies that the

algorithm accepts with probability at least 1− δ. If Ci ≤ C and j ∈ Pi, then we have

dist(x
(i)
j , V)

triangle ineq.

≥ dist(xj, V)−‖x(i)
j −xj‖

j ∈ Pi and E
≥ 2Ci−ri/2

ri≤Ci
≥ 2Ci−Ci/2 ≥ Ci.

Therefore, each such j must be counted in Line 9 which implies that Ni ≥ n
|Si| |Pi|.

Moreover,

Ni ≥
n

|Si|
|Pi|

E ′
≥ |Mi| − CL−1C−1

i /8.

On the other hand, if C > Ci, since the algorithm checks every xj, j ∈ [n], we know

that if j ∈Mi then j contributes one to Ni. It implies that Ni ≥ |Mi|. Therefore, we

61

conclude that for every i,

Ni ≥ |Mi| − CL−1C−1
i /8. (A.1)

Next, we consider the following two cases.

1) If there is some j such that dist(xj, V) > 3C then for some i ∈ [L] satisfying

that C < Ci ≤ 2C,

dist(x
(i)
j , V)

triangle ineq.

≥ dist(xj, V)− ‖x(i)
j − xj‖

E
≥ 3C − ri/2

ri≤Ci≤2C
> 3C − 2C = C.

Hence at the i-th round, we have Ni ≥ 1 which implies T ≥ Ci > C.

2) Assume that dist(xj, V) ≤ 3C for every j ∈ [n]. In this case, we claim that

cost(X, V) ≤ 2
L∑
i=1

Ci|Mi|+
C

10
. (A.2)

For every j ∈ [n], let αij denote the indicator function of j ∈Mi. Since cost(xj, V) ≤

3C < 2C1, we have α1j = 0. Hence there must exist some i∗ ∈ {1, 2, . . . , L} which is

the smallest number such that αij = 0. Then by the definition of Mi and Ci+1 = Ci/2,

we know that,

cost(xj, V) ≤ 2Ci∗ = 2(CL + CL + CL−1 + CL−2 + . . .+ Ci∗−1) = 2CL +
L∑
i=1

2Ciαij.

Moreover, |Mi| = αi1 + . . .+ αin. So we have

cost(X, V) =
n∑
i=1

cost(xj, V) ≤
n∑
j=1

(
2CL +

L∑
i=1

2Ciαij

)
= 2nCL+2

L∑
i=1

Ci|Mi| ≤
C

10
+2

L∑
i=1

Ci|Mi|,

where the last inequality is due to the fact that CL = C1

2L−1 ≤ C1

20C1n/C
= C

20n
.

62

Then we have that,

T =
L∑
i=1

NiCi

≥
L∑
i=1

(|Mi| − CL−1C−1
i /8)Ci (Ineq. (A.1))

=
L∑
i=1

|Mi|Ci − C/8

≥cost(X, x)/2− C/20− C/8 (Eq. (A.2))

≥5C − C/20− C/8 (cost(X, V) ≥ 10C)

>C.

Finally, we prove the second argument, i.e., if cost(X, V) ≤ C/10, the algorithm

rejects with probability at least 1−δ. Define sets Ri = {j ∈ [n] : dist(xj, V) ≥ Ci/2},

Qi = Si ∩Ri, and events E ′′i = {ω :

∣∣∣∣ nSi |Qi| − |Ri|
∣∣∣∣ ≥ CL−1C−1

i /8} and E ′′ = ∩E ′′i . By

the same argument as in Lemma 2.2.2, we can prove that Pr[E ∩ E ′′] ≥ 1 − δ. Then

we only need to show that if cost(X, V) ≤ C/10, then T < C conditioned on E ∩ E ′′.

Conditioned on E ∩ E ′′, if Ci ≤ C and j /∈ Ri, we have

dist(x
(i)
j , V)

triangle ineq.

≤ dist(xj, V) + ‖x(i)
j − xj‖

j /∈Ri and E
< Ci/2 + ri/2

ri≤Ci
≤ Ci.

It implies that xj /∈ {O(xl) ∈ Si : |x(i) − x(i)
l | ≥ Ci}. Hence we have Ni ≤ n

|Si| |Qi| in

Line 9. Consequently,

Ni ≤
n

|Si|
|Qi|

E ′′
≤ |Ri|+ CL−1C−1

i /8.

On the other hand, if Ci > C, recall that the algorithm checks every j ∈ [n]. Also

note that if j contributes one to Ni then j ∈ Ri. We know that Ni ≤ |Ri| in this

case. So we conclude that, for every i,

Ni ≤ |Ri|+ CL−1C−1
i /8. (A.3)

63

Similar to Lemma 2.2.4, we claim the following conditioned on E ∩ E ′′

cost(X, V) ≥ 1

2

L∑
i=1

Ci|Ri|. (A.4)

To see this, for every j ∈ [n], let βij denote the indicator function of j ∈ Ri. Fix

a j ∈ [n], let i∗ be the smallest number such that βij = 1. If such i∗ exists, by the

definition of Ri and the fact that Ci+1 = Ci/2,

dist(xj, V) ≥ Ci∗/2 >
1

2
(Ci∗ + Ci∗+1 + . . .+ CL) =

1

2

L∑
i=1

βijCi.

Otherwise if such i∗ does not exist, we have β1j = . . . = βLj = 0. Hence we have

dist(xj, V) ≥ 0 =
1

2

L∑
i=1

βijCi.

Thus, we always have dist(xj, V) ≥ 1
2

∑L
i=1 βijCi. Moreover, |Ri| = βi1+βi2+. . .+βiL.

So we have,

cost(X, V) =
n∑
i=1

dist(xj, V) ≥
n∑
j=1

1

2

(
L∑
i=1

Ciβij

)
=

1

2

L∑
i=1

Ci|Ri|.

Hence we have that,

T =
L∑
i=1

NiCi

≤
L∑
i=1

(|Ri|+ CL−1C−1
i /8)Ci (Ineq. (A.3))

=
L∑
i=1

|Ri|Ci + C/8 (Ineq. (A.3))

≤2cost(X, x) + C/8 (Eq. (A.4))

≤C/5 + C/8 (cost(X, V) ≤ C/10)

<C.

64

�

Proof of Lemma 2.3.3. Let V good
i ⊂ Vi denote the set of 4|Vi|

5
closest points to vi. Then

the probability that {xj : j ∈ Ai} ∩ V good
i = ∅ is,

(1− |V
good
i |
n

)Ai ≤e−
|V good
i

|Ai
n

≤e−
4|Vi|

5
·Ω(n log δ−1

2l
)· 1
n (Defn. of V good

i and Ai)

≤e−
2l·4
5
·Ω(n log δ−1

2l
)· 1
n (|Vi| ≥ 2l)

≤δ.

So with probability at least 1− δ, we have a j1 ∈ Ai such that xj1 ∈ V
good
i . That

means

cost(Vi, xj1) =
∑
xj∈Vi

‖xj − xj1‖ ≤
∑
xj∈Vi

(‖vi − xj‖+ ‖vi − xj1‖) (triangle ineq.)

=cost(Vi, vi) + |Vi|‖vi − xj1‖

≤cost(Vi, vi) +
|Vi|

|Vi| − |V good
i |

∑
xj∈Vi\V goodi

‖vi − xj‖ (Defn. of V good
i)

≤cost(Vi, vi) +
|Vi|

|Vi| − |V good
i |

cost(Vi, vi)

≤6cost(Vi, vi). (|V good
i | = 4|Vi|

5
)

�

proof of Lemma 2.3.4. Again, we condition on the event that every call of TestKme-

dian or NoisyKmedian succeeds, which happens with probability at least

1− δ

10
−

+∞∑
i=1

δ

10i(i+ 1)
≥ 1− δ,

by Lemma 2.3.2.

In Line 2, the first ”IF” statement checks if OPT ∈ Ω(n). If it is the case, the

65

algorithm applies NoisyKmedian which takes

Õδ−1(d(n3OPT−2 + n)) = Õδ−1(dn)

many samples. The correctness is guaranteed by Theorem 2.1.3.

If OPT ∈ O(n), we obtain an O(1)-approximation clustering V when the algo-

rithm terminates by Lemma 2.3.2 and a similar argument as in the proof of Theorem

2.2.6. The output C satisfies that OPT/10 ≤ C ≤ OPT by Lemma 2.3.2 since TestK-

NATKP({O(xi) : i = 1, 2, . . . , n}, k, C, δ
10i(i+1)

) rejects at the last round and TestK-

NATKP({O(xi) : i = 1, 2, . . . , n}, k, 10C, δ
10(i−1)i

) accepts at the penultimate round.

Moreover, the sample complexity is determined by the last call of TestKmedian since

C decreases exponentially, which takes

Õδ−1(dk2(n2OPT−2 + n))

many samples by Lemma 2.3.2. �

66

Appendix B

Coreset Construction

In the main text, we propose two algorithms NoisyKmedian and NoisyKmedian2 for

computing the noisy k-median problem. However, the approximation factor seems

quite large. In this section, we show how to improve the approximation factor arbi-

trarily close to 1. A simple way is to estimate the location of each point up to an

error at most εOPT/n and do the exhaustive search by the estimations. However, it

requires Õδ−1

(
d(n3OPT−2ε−2 + n)

)
samples in total. We want to reduce this sample

complexity. The main idea is to first construct a so-called ε-coreset (see Definition

B.0.4) and do the exhaustive search on the coreset.

Definition B.0.4. (ε-coreset) Given a noisy k-median instance X = {O(xj) : j =

1, 2, . . . , n} in Rd and an ε > 0, an ε-coreset is defined to be a collection S ⊂ Rd with

a weight function w : S → R+ such that for any k centers V , the following property

holds ∑
x∈S

w(x)dist(x, V) ∈ (1± ε)cost(X, V).

Note that an ε-coreset is a collection of deterministic points. Hence we can run

any existing k-median algorithm on the coreset, e.g., BPRS or exhaustive search. The

key problem is how to construct an ε-coreset. We propose Algorithm 8 to achieve

this goal. We first run Algorithm NoisyKmedian to obtain an O(1)-approximate k-

median clustering V and an O(1)-approximate k-median value D. Then we construct

an ε-coreset by importance sampling. The construction approach is a combination

67

of Algorithm DisNATKP and Algorithm k-MEDIAN-CORESET in [41]. Note that

in Line 3, we set the initial value r0 to be 2D which is different from Algorithm

DisNATKP. The reason is that D is a fixed value in Algorithm Coreset instead of an

increasing value in Algorithm DisNATKP. Hence we let r0 = 2D such that Tr0 >

εD/100 in Line 4. It ensures that Algorithm Coreset runs at least one iteration from

Line 4 to Line 13 and estimates the locations of arms with high contribution. We

estimate dist(xj, V) for each j ∈ [n] by the same technique as in Algorithm DisNATKP.

From Line 4 to Line 19, we compute an upper bound s(j) for the “importance” of each

point xj, i.e., s(j) ≥
⌈
n·dist(xj ,V)

cost(X,V)

⌉
+1; see Lemma B.0.5. This property guarantees the

correctness of the importance sampling in Line 20, where we sample a collection U by

the probability distribution determined by s(j). Our ε-coreset contains the estimated

locations of points in U and all points in V . The weight function is defined by the

same way as in Algorithm k-MEDIAN-CORESET in [39].

Before proving the correctness of the ε-coreset, we need the following lemmas for

preparation.

Lemma B.0.5. With probability at least 1 − δ/4, s(j) ≥
⌈
n·dist(xj ,V)

cost(X,V)

⌉
+ 1 for each

j ∈ [n]. Moreover,
∑

j∈[n] s(j) < 33n.

Proof. By Theorem 2.1.3, we know that the output of NoisyKmedian(X, δ/8) satisfies

that D ∈ [2
5
, 3

2
] · cost(X, V) with probability at least 1 − δ/8. Let G ⊆ [n] be the

collection of j such that flag(j) =TRUE in Line 14. Observe that |G| = n − T

by Line 10. Define event E = {ω : ∀i ∈ Z+, j ∈ [n], ‖x(i)
j − xj‖ ≤ ri}. Note

that Pr[E] ≥ 1 − δ/8. Conditioned on E and assume NoisyKmedian succeeds, whose

probability is at least 1− δ/4, we consider the following cases.

1) For any j ∈ G, assume that s(j) =
⌈

24nrij
D

⌉
+ 1 for some integer ij. By Lemma

2.1.2, we have rij = rij−1/2 ≥ dist(xj, V)/24. Therefore, we have

s(j) =

⌈
24nrij
D

⌉
+ 1 ≥

⌈
n · dist(xj, V)

cost(X, V)

⌉
+ 1.

2) If j /∈ G, assume in Line 14, the variable i = i∗. By Lemma 2.1.2, we have

68

Algorithm 8 Coreset({O(xi) : i = 1, 2, . . . , n}, δ)
Require: A sample access O(xi) to N(xi, Id) for each i ∈ [n] and a confidence pa-

rameter δ ∈ (0, 1).
Ensure: An ε-coreset S ⊂ Rd with a weight function w : S → R+.

1: Run NoisyKmedian(X, δ/8). Let the output be a size-k set V and a value D.
2: For every j ∈ [n], flag(j)←FALSE. For every v ∈ V , Pv ← ∅.
3: r0 ← 2D, i ← 0, T ← n, S ← ∅, t ← O

(
ε−2kmin{d log d, log k}+ k log 1

δ

)
, and

m← O (ε−2D−2n2 log tδ).
4: while Tri ≥ εD/100 do
5: ri+1 ← ri/2, i← i+ 1, and mi = O

(
r−2
i (d+ log(δ−1ni))

)
.

6: Take mi samples from every arm O(xj) (j ∈ [n]) and compute the average x
(i)
j

as an estimate of xj.
7: for j = 1, 2, . . . , n, flag(j) =FALSE do
8: For every v ∈ V , compute cjv = max

y∈B(x
(i)
j ,3ri)

‖y − v‖ and djv =

min
y∈B(x

(i)
j ,3ri)

‖y − v‖.
9: if

(
∀v ∈ V, djv > 0 and ∃v1∀v2 6= v1, cjv1 ≤ 2djv2

)
then

10: Pv1 ← Pv1 ∪ {j}, proj(j) ← arg minv∈V ‖x(i)
j − v‖, s(j) ←

⌈
24nri
D

⌉
+ 1,

flag(j)←TRUE, T ← T − 1.
11: end if
12: end for
13: end while
14: for j = 1, 2, . . . , n do
15: if flag(j) =FALSE then

16: Compute v ← arg minv′∈V ‖x(i)
j − v′‖.

17: Pv ← Pv ∪ {j}, proj(j)← v, and s(j)←
⌈

24nri
D

⌉
+ 1.

18: end if
19: end for
20: Pick a non-uniform random sample U of [n] with probability s(j)∑

j∈[n] s(j)
for each

j ∈ [n].
21: for each j ∈ U do
22: Take m samples from arm O(xj) and compute the average x̃j as an estimate of

xj.

23: S ← S ∪ {x̃j}, and w(x̃j)←
∑
j∈[n] s(j)

t·s(j) .
24: end for
25: for each v ∈ V do
26: S ← S ∪ {v}, and w(v)← (1 + 10ε)|Pv| −

∑
j∈U∩Pv w(x̃j).

27: end for
28: return S and w.

69

ri∗ ≥ dist(xj, V)/12 Therefore, we have

s(j) =

⌈
24nri∗

D

⌉
+ 1 ≥

⌈
n · dist(xj, V)

cost(X, V)

⌉
+ 1.

Next, we prove
∑

j∈[n] s(j) < 33n. By Lemma 2.1.2, we have

rij ≤
1

2
dist(xj, V) (B.1)

for any j ∈ G, conditioned on E . We have the following inequality

∑
j∈[n]

s(j) =
∑
j∈G

s(j) +
∑

j∈[n]\G

s(j)

=
∑
j∈G

(⌈
24nrij
D

⌉
+ 1

)
+
∑

j∈[n]\G

(⌈
24nri∗

D

⌉
+ 1

)
(Definitions of s(j) and i∗)

≤
∑
j∈G

(
24nrij
D

+ 2

)
+ T ·

(
24nri∗

D
+ 2

)
(Defn. of T)

≤
∑
j∈G

24nrij
0.4cost(X, V)

+ T · 24nri∗

D
+ 2n (D ∈ [

2

5
,
3

2
] · cost(X, V))

≤
∑
j∈G

24n · 3
2
dist(xj, V)

0.4cost(X, V)
+ T · 24nri∗

D
+ 2n (Ineq. (B.1))

≤
∑
j∈G

30ndist(xj, V)

cost(X, V)
+

24εn

100
+ 2n (Tri∗ < εD/100 by Line 4)

≤ 30n+ 0.24n+ 2n

< 33n.

It completes the proof. �

Lemma B.0.6. With probability at least 1− δ/4, we have w(v) ≥ 0 for any v ∈ V .

Proof. The lemma can be directly proved by the chosen of t and Corollary 15.3 in

[41]. �

Now we are ready to prove the main theorem of this section.

Theorem B.0.7. With probability at least 1− δ, Coreset({O(xi) : i = 1, 2, . . . , n}, δ)

70

outputs an ε-coreset with sample complexity

Õδ−1

(
d(n3OPT−2 + ε−4kn2OPT−2 + n)

)
,

where OPT = miny∈R cost(X, y) is the optimal 1-median value.

Proof. Define event E1 =
{
w : cost(X, V) = O(1) ·OPT, D ∈ [2

5
, 3

2
] · cost(X, V)

}
. By

Theorem 2.1.3, we have Pr[E1] ≥ 1 − δ/4. Define M to be the collection of all k

center sets in Rd. For every j ∈ [n], let lj :M→ R+ be defined as follows:

lj(S) =
dist(xj, S)− dist(proj(j), S)

s(j)
+

100 · cost(X, V)∑
j∈[n] s(j)

.

Observe that the above function is similar to Definition 14.4 in [39]. Define E2 = {ω :

∀v ∈ S, w(v) ≥ 0}. By Lemma B.0.6, we have Pr[E2] ≥ 1 − δ/4. Conditioned on

E2, we claim that with probability at least 1 − δ/4, for any S ∈ M, the following

property holds:∣∣∣∣∣∣cost(X,S)−

∑
j∈[n]

dist(proj(j), S) +
∑
j∈U

w(x̃j)dist(xj, S)−
∑
j∈U

w(x̃j)dist(proj(j), S)

∣∣∣∣∣∣
≤ εcost(X,B).

(B.2)

Note that we set t ← O
(
ε−2kmin{d log d, log k}+ k log 1

δ

)
, w(x̃j) ←

∑
j∈[n] s(j)

t·s(j) , and

s(j) satisfying Lemma B.0.5. Combining the proof of Theorems 14.5 and 16.4 in [41],

we only need to prove that lj(S) ≥ 0 for any j ∈ [n] and S ∈M, with probability at

least 1− δ/8.

Define events Ei = {ω : ∀j ∈ [n], ‖x(i)
j − xj‖ ≤ ri} and E = ∩i≥1Ei. By the proof

of Lemma 2.1.1, we know that Pr[E] ≥ 1 − δ/8. By the triangle inequality, for any

j ∈ [n] and S ∈M, we have

|dist(xj, S)− dist(proj(j), S)| ≤ dist(xj, proj(j)).

71

Thus it suffices to prove that

dist(xj, proj(j)) ≤ 100s(j) · cost(X, V)∑
j∈[n] s(j)

(B.3)

conditioned on E . Let G ⊆ [n] be the collection of j such that flag(j) =TRUE in Line

14. Observe that |G| = n− T by Line 10. We discuss the following two cases.

1) If j ∈ G, assume that flag(j) is set to be TRUE at the ij-th round. We have

the following

dist(xj, proj(j)) ≤ dist(xj, x
(ij)
j) + dist(x

(ij)
j , proj(j)) (triangle ineq.)

≤ rij + dist(x
(ij)
j , proj(j)) (E)

= rij + dist(x
(ij)
j , V) (Defn. of proj(j))

≤ 1

2
dist(xj, V) +

3

2
dist(xj, V) (Lemma 2.1.2)

= 2dist(xj, V)

=
66 · n·dist(xj ,V)

cost(X,V)
· cost(X, V)

33n

≤ 100s(j) · cost(X, V)∑
j∈[n] s(j)

. (Lemma B.0.5)

72

2) If j /∈ G, assume in Line 14, the variable i = i∗. We have the following

dist(xj, proj(j)) ≤ dist(xj, x
(i∗)
j) + dist(x

(i∗)
j , proj(j)) (triangle ineq.)

≤ ri∗ + dist(x
(i∗)
j , proj(j)) (E)

= ri∗ + dist(x
(i∗)
j , V) (Defn. of proj(j))

≤ ri∗ + dist(xj, x
(i∗)
j) + dist(xj, V) (triangle ineq.)

≤ 2ri∗ + dist(xj, V) (E)

≤ 2ri∗ + 12ri∗ (Lemma 2.1.2)

≤
66 · 7nri∗

cost(X,V)
· cost(X, V)

33n

≤
66 · 20nri∗

D
· cost(X, V)

33n
(E1)

≤ 100s(j) · cost(X, V)∑
j∈[n] s(j)

. (Defn. of s(j) and Lemma B.0.5)

Next, we define event E3 = {ω : ∀j ∈ [n], ‖x̃j − xj‖ ≤ εD
50n
}. Similar to the

proof of Lemma 2.1.1, we have Pr[E3] ≥ 1 − δ/4. Define event E = {w : E1 ∩ E2 ∩

E3 and Claim (B.2) succeeds}. By the union bound, we have Pr[E] ≥ 1−δ. It suffices

to prove that S is an ε-coreset conditioned on E .

73

For any S ∈M, we have∣∣∣∣∣∑
j∈U

w(x̃j)dist(x̃j, S)−
∑
j∈U

w(x̃j)dist(xj, S)

∣∣∣∣∣ =

∣∣∣∣∣∑
j∈U

w(x̃j) (dist(x̃j, S)− dist(xj, S))

∣∣∣∣∣
≤

∣∣∣∣∣∑
j∈U

w(x̃j)‖x̃j − xj‖

∣∣∣∣∣ (triangle ineq.)

≤ εD
50n

∣∣∣∣∣∑
j∈U

w(x̃j)

∣∣∣∣∣ (E3)

=
εD

50n

∣∣∣∣∣∑
j∈U

∑
j∈[n] s(j)

t · s(j)

∣∣∣∣∣ (Defn. of w(x̃j))

≤ εD
50n

∣∣∣∣∣∑
j∈U

∑
j∈[n] s(j)

t

∣∣∣∣∣ (s(j) ≥ 1)

≤ εD
50n
· 33n (Lemma B.0.5)

=O(ε) ·OPT (E1)

≤O(ε) · cost(X,S). (Defn. of OPT)

(B.4)

We also have∣∣∣∣∣cost(X,S)−
∑
j∈U

w(x̃j)dist(xj, S)−
∑
v∈V

w(v)dist(v, S)

∣∣∣∣∣
=

∣∣∣∣∣cost(X,S)−
∑
j∈U

w(x̃j)dist(xj, S)−
∑
v∈V

(
(1 + 10ε)|Pv| −

∑
j∈U∩Pv

w(x̃j)

)
dist(v, S)

∣∣∣∣∣
≤

∣∣∣∣∣cost(X,S)−
∑
j∈U

w(x̃j)dist(xj, S)−
∑
v∈V

(
|Pv| −

∑
j∈U∩Pv

w(x̃j)

)
dist(v, S)

∣∣∣∣∣
+ 10ε

∣∣∣∣∣∑
v∈V

|Pv| · dist(v, S)

∣∣∣∣∣ (triangle ineq.)

=

∣∣∣∣∣∣cost(X,S)−

∑
j∈[n]

dist(proj(j), S) +
∑
j∈U

w(x̃j)dist(xj, S)−
∑
j∈U

w(x̃j)dist(proj(j), S)

∣∣∣∣∣∣
+ 10ε

∑
v∈V

|Pv| · dist(v, S) (proj(j) = v if j ∈ Pv)

≤εcost(X,S) + 10ε
∑
v∈V

|Pv| · dist(v, S) (Claim (B.2)).

(B.5)

74

Combining Inequalities (B.4) and (B.5), we have∣∣∣∣∣cost(X,S)−
∑
v∈S

w(v)dist(v, S)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
j∈U

w(x̃j)dist(x̃j, S)−
∑
j∈U

w(x̃j)dist(xj, S)

∣∣∣∣∣
+

∣∣∣∣∣cost(X,S)−
∑
j∈U

w(x̃j)dist(xj, S)−
∑
v∈V

w(v)dist(v, S)

∣∣∣∣∣ (triangle ineq.)

≤O(ε) · cost(X,S) + 10ε
∑
v∈V

|Pv| · dist(v, S). (Ineq. (B.4) and (B.5))

It remains to show that 10ε
∑

v∈V |Pv| ·dist(v, S) = O(ε) ·cost(X,S) which implies

that S is an O(ε)-coreset conditioned on E . Then we have the following

10ε
∑
v∈V

|Pv| · dist(v, S)

=10ε
∑
j∈[n]

dist(proj(j), S) (Defn. of proj(j))

≤10ε
∑
j∈[n]

(dist(xj, S) + dist(xj, proj(j))) (triangle ineq.)

≤10ε · cost(X,S) + 10ε
∑
j∈[n]

100s(j) · cost(X, V)∑
j∈[n] s(j)

(Ineq. (B.3))

=10ε · cost(X,S) + 1000ε · cost(X, V)

=10ε · cost(X,S) +O(ε) ·OPT (E1)

≤O(ε) · cost(X,S), (Defn. of OPT)

which completes the proof of the correctness.

Finally, we prove the sample complexity. By Theorem 2.1.3, the number of samples

for NoisyKmedian is Õδ−1(d(n3OPT−2 +n)). Since the process from Line 4 to Line 13

is almost identical to Algorithm DisNATKP and D = O(OPT), we can prove that the

number of samples is Õδ−1(d(n3OPT−2+n)) by the same argument as in Lemma 2.1.1.

From Line 21 to Line 24, the total number of samples is mt = Õδ−1

(
dε−4kn2OPT−2

)
.

It completes the proof. �

75

76

Bibliography

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding
theory. In STOC, pages 271–286. ACM, 2006.

[2] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Approximating
extent measures of points. Journal of the ACM (JACM), 51(4):606–635, 2004.

[3] Pankaj K Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation
algorithms for clustering. Algorithmica, 33(2):201–226, 2002.

[4] Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron.
Testing low-degree polynomials over gf (2). In Approximation, Randomization,
and Combinatorial Optimization.. Algorithms and Techniques, pages 188–199.
Springer, 2003.

[5] Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applica-
tions. Combinatorica, 23(3):365–426, 2003.

[6] David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful
seeding. In SODA, pages 1027–1035, 2007.

[7] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Muna-
gala, and Vinayaka Pandit. Local search heuristics for k-median and facility
location problems. SIAM Journal on computing, 33(3):544–562, 2004.

[8] P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France,
111(4):429–448, 1983.

[9] Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable and distributed
clustering via lightweight coresets. CoRR, abs/1702.08248, 2017.

[10] Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman
problem: Low-dimensionality implies a polynomial time approximation scheme.
SIAM J. Comput., 45(4):1563–1581, 2016.

[11] Mihir Bellare, Don Coppersmith, JOHAN Hastad, Marcos Kiwi, and Madhu Su-
dan. Linearity testing in characteristic two. IEEE Transactions on Information
Theory, 42(6):1781–1795, 1996.

77

[12] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with
applications to numerical problems. Journal of computer and system sciences,
47(3):549–595, 1993.

[13] Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline
and streaming coreset constructions. CoRR, abs/1612.00889, 2016.

[14] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends in Machine
Learning, 2012.

[15] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median and positive correlation in
budgeted optimization. ACM Transactions on Algorithms, 13:1–31, 03 2017.

[16] Wei Cao, Jian Li, Yufei Tao, and Zhize Li. On top-k selection in multi-armed
bandits and hidden bipartite graphs. In NIPS, pages 1036–1044, 2015.

[17] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cam-
bridge university press, 2006.

[18] T.-H. Hubert Chan and Khaled M. Elbassioni. A QPTAS for TSP with fat
weakly disjoint neighborhoods in doubling metrics. Discrete & Computational
Geometry, 46(4):704–723, 2011.

[19] T.-H. Hubert Chan and Anupam Gupta. Small hop-diameter sparse spanners
for doubling metrics. Discrete & Computational Geometry, 41(1):28–44, 2009.

[20] T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On
hierarchical routing in doubling metrics. ACM Trans. Algorithms, 12(4):55:1–
55:22, 2016.

[21] T.-H. Hubert Chan, Anupam Gupta, and Kunal Talwar. Ultra-low-dimensional
embeddings for doubling metrics. J. ACM, 57(4):21:1–21:26, 2010.

[22] T.-H. Hubert Chan, Shuguang Hu, and Shaofeng H.-C. Jiang. A PTAS for
the steiner forest problem in doubling metrics. In FOCS, pages 810–819. IEEE
Computer Society, 2016.

[23] T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality:
Improved PTAS for TSP (with neighborhoods) in doubling metrics. ACM Trans.
Algorithms, 14(1):9:1–9:18, 2018.

[24] T.-H. Hubert Chan, Mingfei Li, and Li Ning. Sparse fault-tolerant spanners for
doubling metrics with bounded hop-diameter or degree. Algorithmica, 71(1):53–
65, 2015.

[25] T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling
spanners: Better and simpler. SIAM J. Comput., 44(1):37–53, 2015.

78

[26] Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-
factor approximation algorithm for the k-median problem. Journal of Computer
and System Sciences, 65(1):129–149, 2002.

[27] Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algo-
rithms for facility location problems with outliers. In Proceedings of the twelfth
annual ACM-SIAM symposium on Discrete algorithms, pages 642–651. Society
for Industrial and Applied Mathematics, 2001.

[28] Ke Chen. On k-median clustering in high dimensions. In SODA, pages 1177–
1185. Society for Industrial and Applied Mathematics, 2006.

[29] Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu, and Wei Chen. Com-
binatorial pure exploration of multi-armed bandits. In NIPS, pages 379–387,
2014.

[30] Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond talagrand functions: new
lower bounds for testing monotonicity and unateness. arXiv preprint arX-
iv:1702.06997, 2017.

[31] K. L. Clarkson. Nearest neighbor queries in metric spaces. Discrete Comput.
Geom., 22(1):63–93, 1999.

[32] Adam Coates and Andrew Y. Ng. Learning feature representations with k-means.
In Neural Networks: Tricks of the Trade - Second Edition, pages 561–580. 2012.

[33] Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in spaces with
bounded doubling dimension. In 38thSTOC, pages 574–583, 2006.

[34] Graham Cormode and Andrew McGregor. Approximation algorithms for clus-
tering uncertain data. In Proceedings of the twenty-seventh ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 191–200.
ACM, 2008.

[35] Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar.
Direct sum testing. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, pages 327–336. ACM, 2015.

[36] Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Statistical query lower
bounds for robust estimation of high-dimensional gaussians and gaussian mix-
tures. In FOCS, pages 73–84.

[37] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron,
and Alex Samorodnitsky. Improved testing algorithms for monotonicity. In Ran-
domization, Approximation, and Combinatorial Optimization. Algorithms and
Techniques, pages 97–108. Springer, 1999.

79

[38] Funda Ergün, Sampath Kannan, S Ravi Kumar, Ronitt Rubinfeld, and Ma-
hesh Viswanathan. Spot-checkers. Journal of Computer and System Sciences,
60(3):717–751, 2000.

[39] D. Feldman and M. Langberg. A unified framework for approximating and clus-
tering data. In STOC, pages 569–578, 2011.

[40] Dan Feldman and Michael Langberg. A unified framework for approximating
and clustering data. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 569–578. ACM, 2011.

[41] Dan Feldman and Michael Langberg. A unified framework for approximating
and clustering data. In STOC, pages 569–578, 2011.

[42] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into
tiny data: Constant-size coresets for k -means, PCA and projective clustering. In
SODA, pages 1434–1453, 2013.

[43] Dan Feldman and Leonard J Schulman. Data reduction for weighted and outlier-
resistant clustering. In Proceedings of the twenty-third annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 1343–1354. Society for Industrial and Ap-
plied Mathematics, 2012.

[44] Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubin-
feld, and Alex Samorodnitsky. Monotonicity testing over general poset domains.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of comput-
ing, pages 474–483. ACM, 2002.

[45] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local
search yields a PTAS for k-means in doubling metrics. In FOCS, pages 365–374.
IEEE Computer Society, 2016.

[46] Jie Gao, Leonidas J. Guibas, and An Thanh Nguyen. Deformable spanners and
applications. In Symposium on Computational Geometry, pages 190–199. ACM,
2004.

[47] Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and it-
s connection to learning and approximation. Journal of the ACM (JACM),
45(4):653–750, 1998.

[48] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable codes
with relaxed local decoders. In LIPIcs-Leibniz International Proceedings in In-
formatics, volume 33. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[49] Oded Goldreich and Or Sheffet. On the randomness complexity of property
testing. computational complexity, 19(1):99–133, 2010.

[50] Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geo-
metric spanners and geometric routing. In SODA, pages 591–600. SIAM, 2008.

80

[51] Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling
metric spaces. In ESA, volume 5193 of Lecture Notes in Computer Science, pages
478–489. Springer, 2008.

[52] Sudipto Guha and Kamesh Munagala. Exceeding expectations and clustering
uncertain data. In Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 269–278. ACM,
2009.

[53] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries,
fractals, and low-distortion embeddings. In FOCS, pages 534–543. IEEE Com-
puter Society, 2003.

[54] Sariel Har-Peled. Clustering motion. Discrete & Computational Geometry,
31(4):545–565, 2004.

[55] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means
clustering. Discrete & Computational Geometry, 37(1):3–19, 2007.

[56] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, pages 291–300. ACM, 2004.

[57] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional
metrics, and their applications. In Symposium on Computational Geometry,
pages 150–158. ACM, 2005.

[58] Lingxiao Huang, Shaofeng H.-C Jiang, Jian Li, and Xuan Wu. ε-coresets for
clustering(with outliers) in doubing metrics. CoRR, abs/1804.02530, 2018.

[59] Lingxiao Huang and Jian Li. Stochastic k-center and j-flat-center problems.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 110–129. Society for Industrial and Applied Mathemat-
ics, 2017.

[60] Piotr Indyk and Assaf Naor. Nearest neighbor preserving embeddings. ACM
Transactions on Algorithms, To appear.

[61] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach
for facility location problems. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 731–740. ACM, 2002.

[62] Kamal Jain and Vijay V Vazirani. Approximation algorithms for metric facility
location and k-median problems using the primal-dual schema and lagrangian
relaxation. Journal of the ACM (JACM), 48(2):274–296, 2001.

[63] Charanjit S Jutla, Anindya C Patthak, Atri Rudra, and David Zuckerman.
Testing low-degree polynomials over prime fields. In Foundations of Computer
Science, 2004. Proceedings. 45th Annual IEEE Symposium on, pages 423–432.
IEEE, 2004.

81

[64] Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM
Journal on Computing, 36(3):779–802, 2006.

[65] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of
best-arm identification in multi-armed bandit models. The Journal of Machine
Learning Research, 17(1):1–42, 2016.

[66] Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computa-
tional learning theory. MIT press, 1994.

[67] Michael Langberg and Leonard J. Schulman. Universal ε-approximators for in-
tegrals. In SODA, pages 598–607, 2010.

[68] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation.
SIAM Journal on Computing, 45(2):530–547, 2016.

[69] Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample
complexity of learning. J. Comput. Syst. Sci., 62(3):516–527, 2001.

[70] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Information
Theory, 28(2):129–136, 1982.

[71] Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training
mixture models at scale via coresets. arXiv preprint arXiv:1703.08110, 2017.

[72] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In I. Guy-
on, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 5788–5799. Curran Associates, Inc., 2017.

[73] Jeff M. Phillips. Coresets and sketches. CoRR, abs/1601.00617, 2016.

[74] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and
a sub-constant error-probability pcp characterization of np. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 475–484.
ACM, 1997.

[75] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials
with applications to program testing. SIAM Journal on Computing, 25(2):252–
271, 1996.

[76] Amir Shpilka and Avi Wigderson. Derandomizing homomorphism testing in
general groups. SIAM Journal on Computing, 36(4):1215–1230, 2006.

[77] Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-
tolerant spanners for doubling metrics. In STOC, pages 363–372. ACM, 2014.

[78] Talagrand. Upper and Lower Bound of Stochastic Process: Modern Methods and
Classical Problems. Springer, 2014.

82

[79] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional met-
rics. In STOC, pages 281–290. ACM, 2004.

[80] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, et al. Cluster analysis: basic
concepts and algorithms. Introduction to data mining, 8:487–568, 2006.

[81] Ramon van Handel. Probability in high dimension. Technical report, DTIC
Document, 2014.

[82] Haitao Wang and Jingru Zhang. One-dimensional k-center on uncertain data.
Theoretical Computer Science, 602:114–124, 2015.

[83] Yuan Zhou, Xi Chen, and Jian Li. Optimal pac multiple arm identification with
applications to crowdsourcing. In ICML, pages 217–225, 2014.

83

	Introduction
	New Model to Capture Clustering of Uncertain Data
	Main Contribution
	Technique Overview

	Handling Massive Data: Robust Coreset and Property Testing
	Related Work
	Preliminaries

	The Sample Complexity of Stochastic k-median Problem
	An Upper Confidence Bound(UCB)-based Algorithm
	Computing Sum of Distances from n Arms to k Points
	Noisy K-Median

	A Testing-Based Algorithm for d=k=1
	Testing the Total Distance from n Arms to 1 Arm
	Noisy 1-Median

	A Testing-Based Algorithm for General Case: Sharper Dependence on n
	Testing the Total Distance from n Arms to k Centers
	Testing the Optimal k-Median Value
	Noisy k-Median

	Lower Bound
	Instance Lower Bound
	Worst-Case Lower Bound

	Robust Coreset and Property Testing
	Approximation to Robust Coreset
	Application to Property Testing

	Missing Proofs
	Coreset Construction

