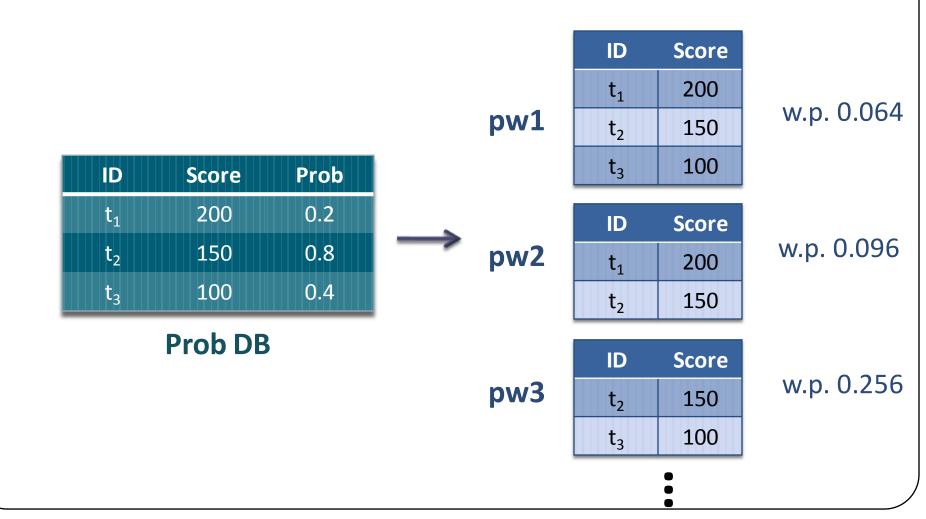
A Unified Approach to Ranking in Probabilistic Databases

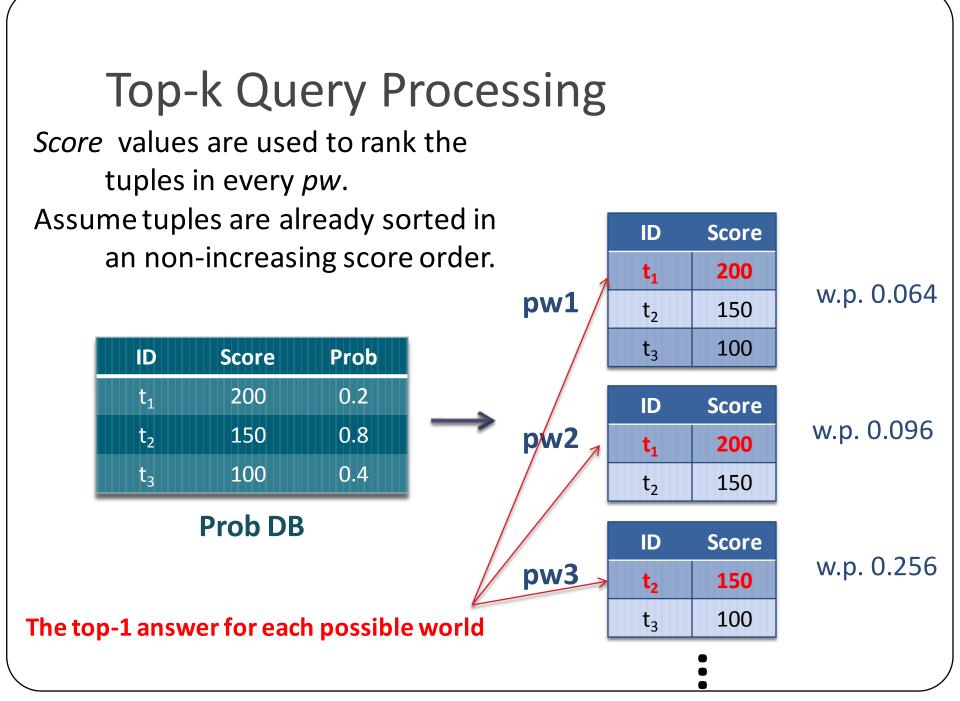
Jian Li, Barna Saha, Amol Deshpande University of Maryland, College Park, USA

Probabilistic Databases

- Motivation: Increasing amounts of uncertain data
 - Sensor Networks; Information Networks
 - Noisy input data; measurement errors; incomplete data
 - Prevalent use of probabilistic modeling techniques
 - Data Integration and Information Extraction
 - Need to model reputation, trust, and data quality
 - Increasing use of automated tools for schema mapping etc.
 - .
- Probabilistic databases
 - Annotate *tuples* with existence probabilities, and attribute values with probability distributions
 - Propagate probabilities through query execution
 - Interpretation according to the "possible worlds semantics"

Possible World Semantics





- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

Top-k Queries: Many Prior Proposals

- U-top-k [Soliman et al. '07]
 - Returns the most probable top *k*-answer
- U-rank-k [Soliman et al. '07]
 - At rank *i*, return the tuple with max prob of being rank *i*
- Probabilistic Threshold (PT-k) [Hua et al. '08]
 - Return all tuples *t* s.t. $Pr(r(t) \le k) \ge \theta$
- Global-top-k [Zhang et al. '08]
 - Return k tuples t with the largest $Pr(r(t) \le k)$ values.
- Expected Score
 - Return k tuples t with the highest score(t)Pr(t)
- Expected Rank [Cormode et al. '09]
 - Return k tuples t with smallest $\sum Pr(pw) r_{pw}(t) (r_{pw}(t) = |pw|+1 \text{ if } t \notin pw)$

Top-k Queries

- Which one should we use???
- Comparing different ranking functions

Normalized Kendall Distance: #reversals and #mismatch elements lies in [0,1], 0: Same answers; 1: Disjoint answers

	E-Score	PT/GT	U-Rank	E-Rank	U-Top
E-Score		0.124	0.302	0.799	0.276
PT/GT	0.124		0.332	0.929	0.367
U-Rank	0.302	0.332		0.929	0.204
E-Rank	0.799	0.929	0.929		0.945
U-Top	0.276	0.367	0.204	0.945	

Real Data Set: 100,000 tuples, Top-100

Top-k Queries

- Which one should we use???
- Comparing different ranking functions

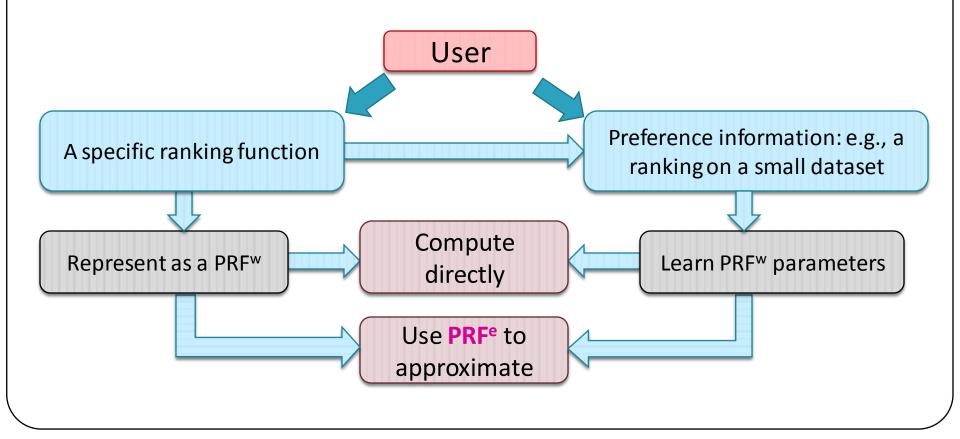
Normalized Kendall Distance: #reversals and #mismatch elements lies in [0,1], 0: Same answers; 1: Disjoint answers

	E-Score	PT/GT	U-Rank	E-Rank	U-Top
E-Score		0.864	0.890	0.004	0.925
PT/GT	0.864		0.395	0.864	0.579
U-Rank	0.890	0.395		0.890	0.316
E-Rank	0.004	0.864	0.890		0.926
U-Top	0.925	0.579	0.316	0.926	

Synthetic Dataset: 100,000 tuples, Top-100

Our Approach

- Define two parameterized ranking functions: PRF^w; PRF^e
 - .. that can simulate or approximate a variety of ranking functions
 - PRF^e much more efficient to evaluate (than PRF^w)



- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

Parameterized Ranking Function

- Weight Function: $\omega : T \times N \rightarrow C$
- Parameterized Ranking Function (PRF)

$$\begin{split} \Upsilon_{\omega}(t) &= \sum_{pw:t\in pw} \omega(t,r_{pw}(t)) \cdot \Pr(pw) \\ &= \sum_{pw:t\in pw} \sum_{i>0} \omega(t,i) \Pr(pw \wedge r_{pw}(t)=i) \\ &= \sum_{i>0} \omega(t,i) \cdot \Pr(r(t)=i). \end{split}$$

Return k tuples with the highest $|\Upsilon_{\omega}|$ values.

Parameterized Ranking Function

- $\omega(t,i)=1$: Rank the tuples by probabilities
- ω(t,i)=score(t): E-Score
- **PRF** $^{\omega}$ (**h**): $\omega(t, i) = \omega(i)$ and $\omega(i) = 0 \quad \forall i > h$ • **PT/GT-k**: $\omega(i) = \begin{cases} 1, & i \leq k \\ 0, & \text{otherwise} \end{cases}$ • *U-Rank*: $\omega_j(i) = \begin{cases} 1, & i=j \\ 0, & \text{otherwise} \end{cases}$

The tuple with the largest Υ_{ω_j} value is the rank-j answer.

• **PRF**^{*e*}(α): ω (*i*)= α^{i} where α can be a real or a complex number

- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

Computing PRF: Assuming tuple Independence

 T_{i-1} : the set of tuples with scores higher than $t_i \sigma$: Boolean indicator vector

$$\begin{aligned} \mathsf{Pr}(r(t_i) = j) &= \mathsf{Pr}(t_i) \sum_{pw:|pw\cap T_{i-1}|=j-1} \mathsf{Pr}(pw) \\ &= \mathsf{Pr}(t_i) \sum_{\sigma:\sum_{l=1}^{i-1} \sigma_l = j-1} \prod_{l < i:\sigma_l = 1} \mathsf{Pr}(t_l) \prod_{l < i:\sigma_l = 0} (1 - \mathsf{Pr}(t_l)) \end{aligned}$$

Generating Function Method

$$\mathcal{F}(x) = \prod_{i=1}^{n} (a_i + b_i x)$$

• The coefficient of x^k :

$$\sum_{\beta:\sum_{i=1}^{n}\beta_i=k}\prod_{i:\beta_i=0}a_i\prod_{i:\beta_i=1}b_i$$

Computing PRF: Assuming tuple Independence

$$\mathsf{T}_{i-1}: \{ \mathsf{t}_1, \mathsf{t}_2, \dots, \mathsf{t}_{i-1} \}$$

Generating Function Method

$$\mathcal{F}^{i}(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \Pr(t) + \Pr(t) \cdot x\right)\right) \left(\Pr(t_{i}) \cdot x\right)$$

- The coefficient of x^k : Pr(r(t_i)=k)
- Algorithm:
 - For i=1 to n
 - Construct $\mathcal{F}^i(x)$
 - Expand $\mathcal{F}^i(x) = \sum_{j=1}^n \mathsf{Pr}(r(t_i) = j) x^j$.
 - $\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \operatorname{Pr}(r(t_i) = j)$

Expand from scratch O(n²)

O(n³) overall

Computing PRF: Assuming tuple Independence

$$\mathsf{T}_{i-1}: \{ \mathsf{t}_1, \mathsf{t}_2, \dots, \mathsf{t}_{i-1} \}$$

Generating Function Method

$$\mathcal{F}^{i}(x) = \left(\prod_{t \in T_{i-1}} \left(1 - \Pr(t) + \Pr(t) \cdot x\right)\right) \left(\Pr(t_{i}) \cdot x\right)$$

- The coefficient of x^k : Pr(r(t_i)=k)
- Algorithm:
 - For i=1 to n
 - Construct $\mathcal{F}^i(x)$
 - Expand $\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$ -

•
$$\Upsilon(t_i) = \sum_{j=1}^n \omega(t_i, j) \operatorname{Pr}(r(t_i) = j)$$

Can be improved to O(n)

O(n²) overall

- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(α)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

Computing PRF^e(α): Assuming tuple Independence

- Recall $\omega(j) = \alpha^j$
- Generating Function Method

•
$$\mathcal{F}^i(x) = \sum_{j=1}^n \Pr(r(t_i) = j) x^j$$

•
$$\Upsilon(t_i) = \sum_{i=1}^n \Pr(r(t_i) = j)\omega(i) = \sum_{i=1}^n \Pr(r(t_i) = j)\alpha^j$$

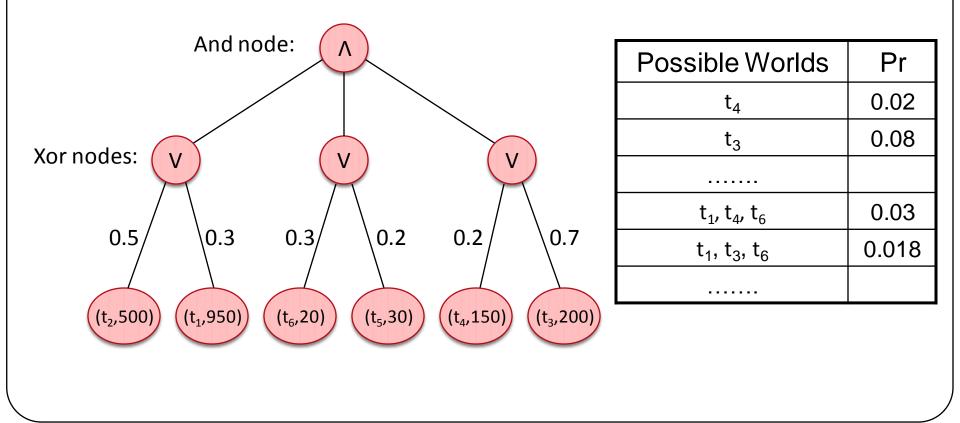
• Therefore: $\mathcal{F}^{i}(\alpha) = \mathcal{F}^{i}(\alpha)$ No need to expand the polynomial !! ($\prod_{t \in T_{i-1}} \left(1 - \Pr(t) + \Pr(t) \cdot \alpha\right)$) ($\Pr(t_{i}) \cdot \alpha$)

• Morevoer:
$$\mathcal{F}^{i}(\alpha) = \frac{\Pr(t_{i})}{\Pr(t_{i-1})} \mathcal{F}^{i-1}(\alpha) \left(1 - \Pr(t_{i-1}) + \Pr(t_{i-1})\alpha\right)$$

- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

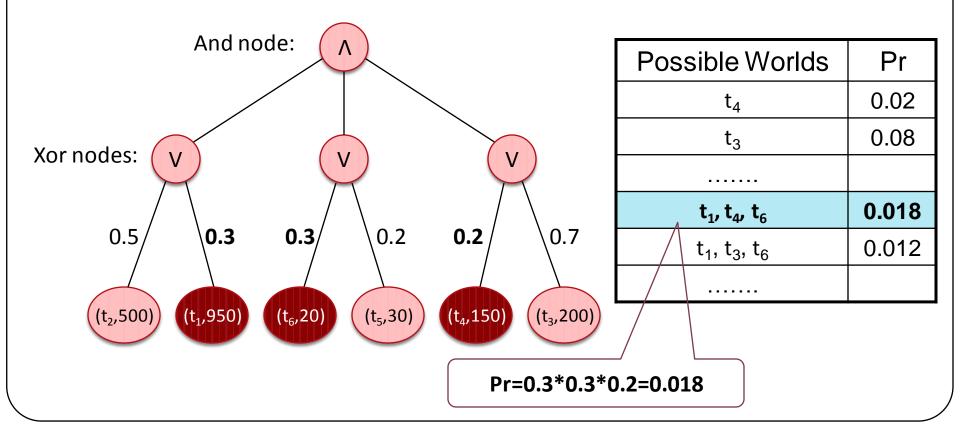
Computing PRF: Probabilistic And/Xor Trees

• Capture two types of correlations: mutual exclusitivity and coexistence.



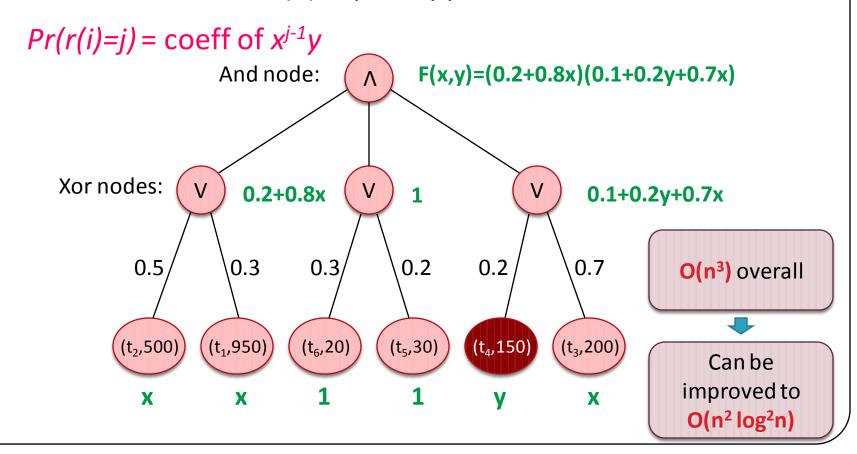
Computing PRF: Probabilistic And/Xor Trees

• Capture two types of correlations: mutual exclusitivity and coexistence.



Computing PRF: Probabilistic And/Xor Trees

r(i)=j if and only if (1) *j-1* tuples with higher scores appear
(2) tuple *i* appears



Generating Function:
$$\mathcal{F}^{i}(x,y) = \sum_{j} c'_{j} x^{j} + (\sum_{j} c_{j} x^{j-1}) y$$

The coeff of $x^{j-1}y : c_j = Pr(r(t_i)=j)$

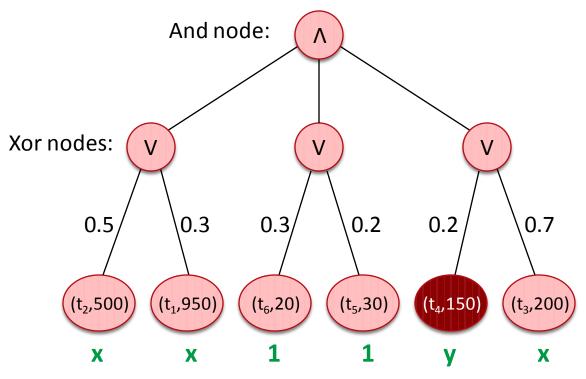
Therefore:
$$\Upsilon(t_i) = \sum_{j=1}^n \alpha^j c_j$$

$$\Upsilon(t_i) = \sum_j c_j \alpha^j = \left(\sum_j c'_j \alpha^j + (\sum_j c_j \alpha^{j-1})\alpha\right) - \sum_j c'_j \alpha^j$$
$$= \mathcal{F}^i(\alpha, \alpha) - \mathcal{F}^i(\alpha, 0).$$

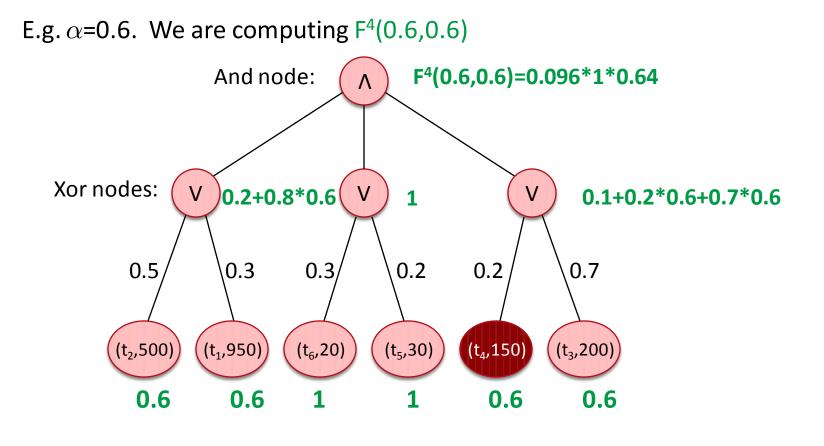
No need to expand the polynomial !!

We maintain only the numerical values of $F^{i}(\alpha, \alpha)$ and $F^{i}(\alpha, 0)$ at each node.

E.g. α =0.6. We are computing F⁴(0.6,0.6)

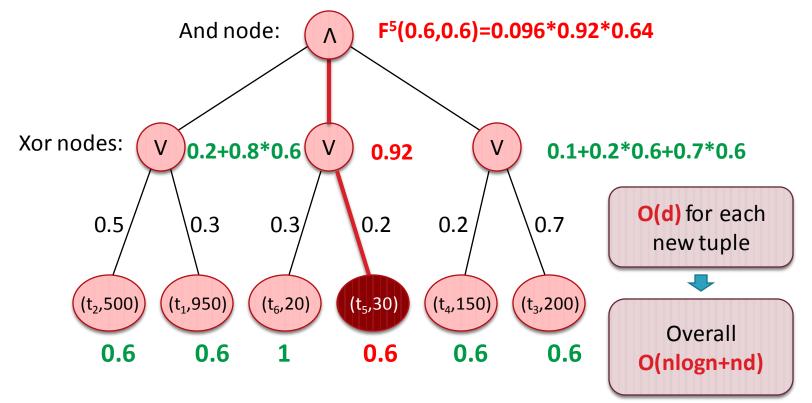


We maintain only the numerical values of $F^{i}(\alpha, \alpha)$ and $F^{i}(\alpha, 0)$ at each node.



We maintain only the numerical values of $F^{i}(\alpha, \alpha)$ and $F^{i}(\alpha, 0)$ at each node.

E.g. α =0.6. Now we want to compute **F**⁵(0.6,0.6)



- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

Approximating PRF^{ω} using PRF^{e}

• Suppose $\omega(i) \approx \sum_{l=1}^{L} u_l \alpha_l^i$

$$\Upsilon(t) = \sum_{i} \omega(i) \Pr(r(t) = i) \approx \sum_{l=1}^{L} u_l \left(\sum_{i} \alpha_l^i \Pr(r(t) = i) \right)$$

- Reduce to L individual PRF^e computations
- Running time : O(nlogn+nL) (as opposed to O(n²))

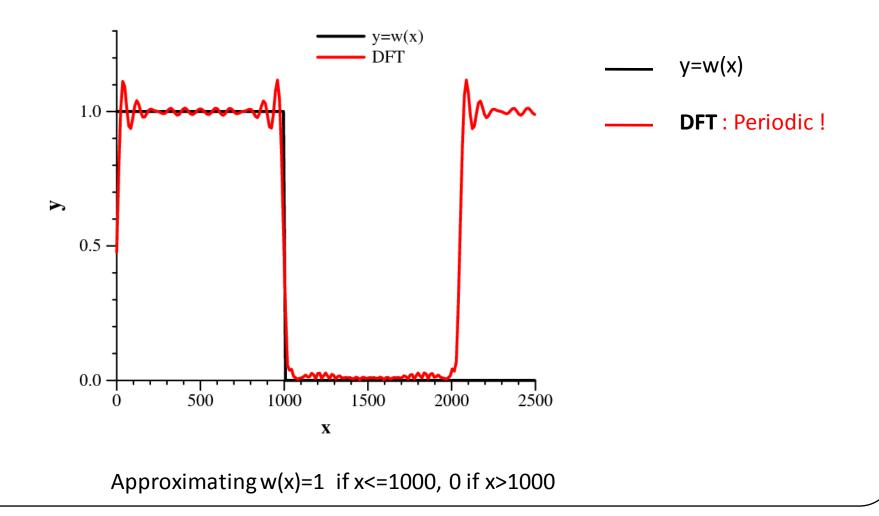
- How to approximate ω () by a linear combination of exponentials? $\omega(i) \approx \sum_{l=1}^{L} u_l \alpha_l^i$
- A scheme based on Discrete Fourier Transformation

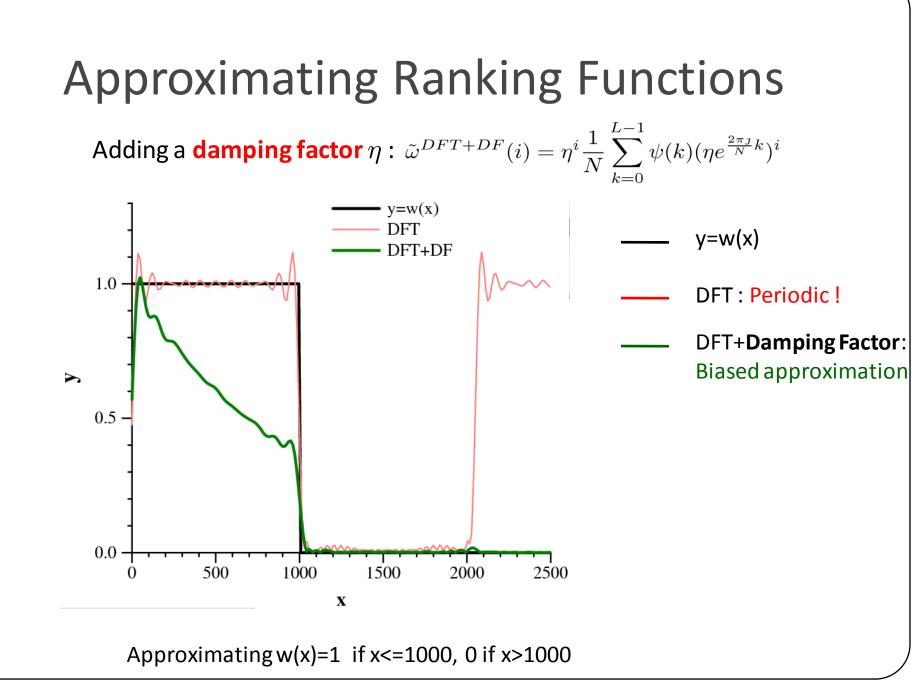
$$\omega(i) = \frac{1}{N} \sum_{k=0}^{N-1} \psi(k) e^{\frac{2\pi j}{N}ki} \qquad i = 0, \dots, N-1.$$

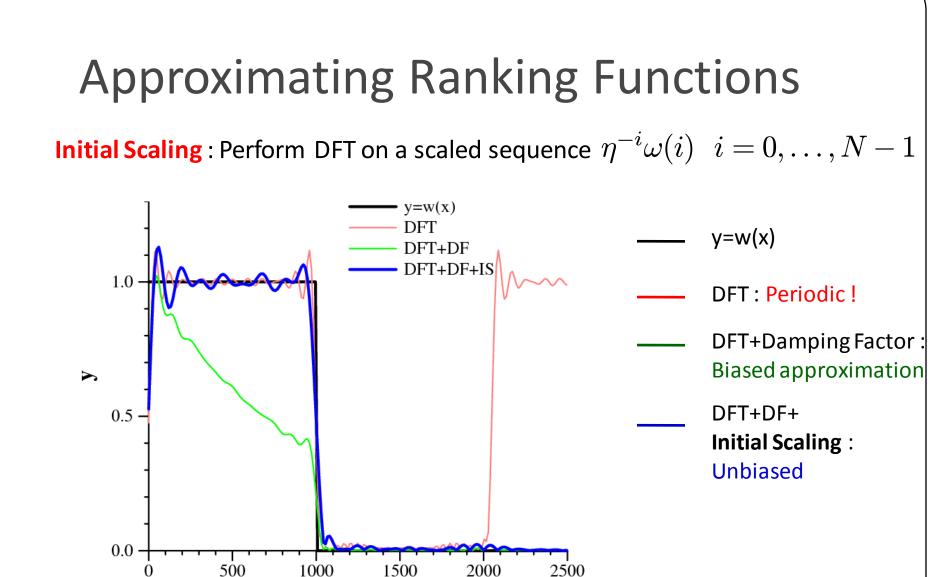
 ψ (0),..., ψ (N-1) is the DFT of ω (0),..., ω (N-1)

• Use the largest *L* DFT coefficients

$$\tilde{\omega}^{DFT}(i) = \frac{1}{N} \sum_{k=0}^{L-1} \psi(k) e^{\frac{2\pi j}{N}ki} \qquad i = 0, \dots, N-1.$$



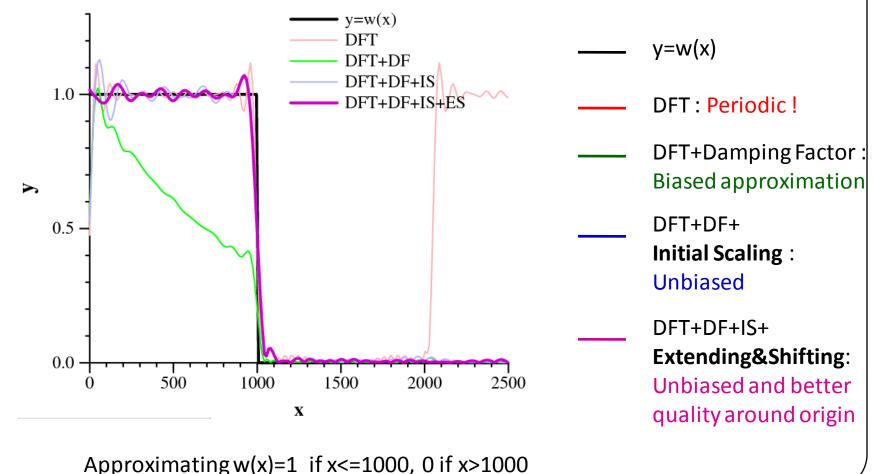


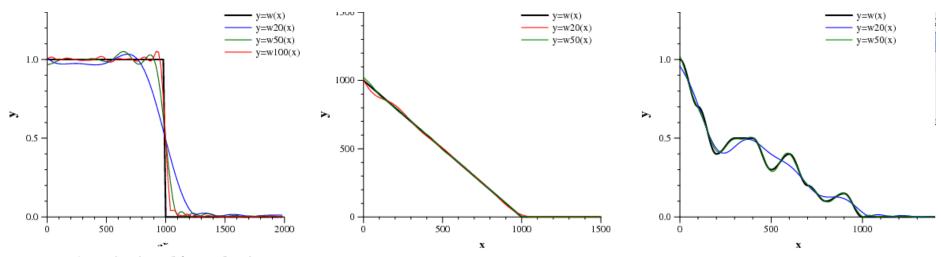


Approximating w(x)=1 if $x \le 1000$, 0 if $x \ge 1000$

Х

Extending and Shifting: Particular tailored for optimizing the approximation quality around the origin.





Approximations of the step function

Approximating w(i)=1000-i for i=0...1000, w(i)=0 for i>1000

Approximating an arbitrary smooth function

- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

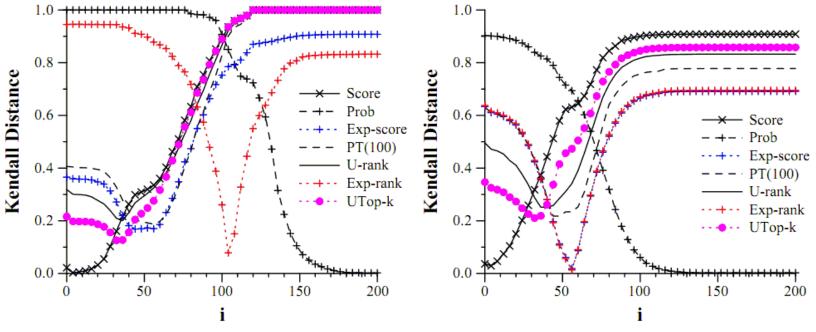
Other Results

- Learning the weight function for PRF^{ω} based user preferences
- A binary search-like heuristic for learning PRF^e(α)
- PRF computation on graphical models
 - A polynomial time algorithm when the junction tree has bounded treewidth
 - A nontrivial dynamic program combined with the generating function method.

- Prior Proposals for Top-k Queries over ProbDB
- Parameterized Ranking Functions
- Computing PRF
 - Independent Tuples
 - Computing PRF^e(lpha)
 - Probabilistic And/Xor Trees
- Approximating Ranking Functions
- Other Results
- Experiments

Experiments

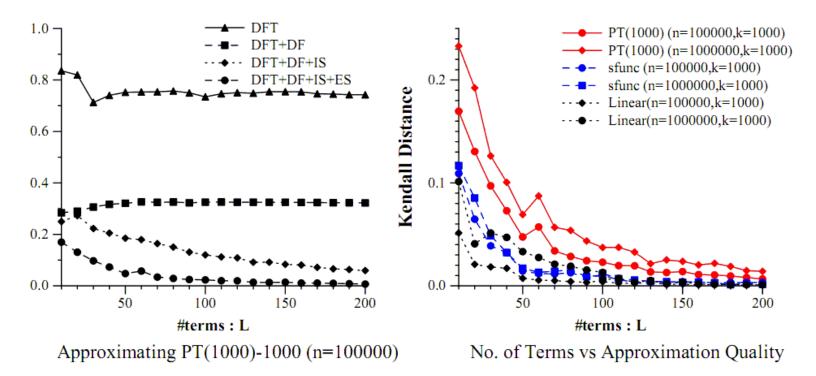
Comparing PRFe with other ranking functions for varying value of α



Approximating with PRF-e (a=1-0.9ⁱ): (i) IIP-100000, k=100; (ii) Syn-IND-1000, k=100

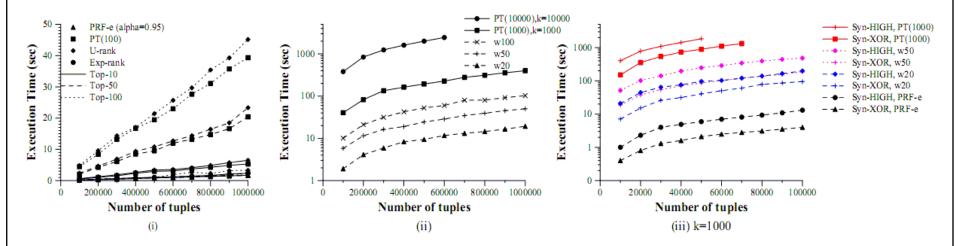
Experiments

Approximation quality for approximating different ranking functions using PRF^e functions



Experiments

Execution Time



Conclusions

- Proposed a unifying framework for ranking over probabilistic databases through:
 - Parameterized ranking functions
 - Incorporation of user feedback
- Designed highly efficient algorithms for computing PRF and PRF^e
- Developed novel approximation techniques for approximating PRF^w with PRF^e