
Jian Li, Barna Saha, Amol Deshpande

University of Maryland, College Park, USA

A Unified Approach to Ranking in
Probabilistic Databases

Probabilistic Databases
 Motivation: Increasing amounts of uncertain data

 Sensor Networks; Information Networks

 Noisy input data; measurement errors; incomplete data

 Prevalent use of probabilistic modeling techniques

 Data Integration and Information Extraction

 Need to model reputation, trust, and data quality

 Increasing use of automated tools for schema mapping etc.

 …

 Probabilistic databases

 Annotate tuples with existence probabilities, and
attribute values with probability distributions

 Propagate probabilities through query execution

 Interpretation according to the "possible worlds semantics"

Possible World Semantics

w.p. 0.064

w.p. 0.096

w.p. 0.256…

ID Score Prob

t1 200 0.2

t2 150 0.8

t3 100 0.4

ID Score

t1 200

t2 150

t3 100

ID Score

t1 200

t2 150

ID Score

t2 150

t3 100

Prob DB

pw1

pw2

pw3

…

Top-k Query Processing

w.p. 0.064

w.p. 0.096

w.p. 0.256…

Score values are used to rank the
tuples in every pw.

Assume tuples are already sorted in
an non-increasing score order.

ID Score Prob

t1 200 0.2

t2 150 0.8

t3 100 0.4

ID Score

t1 200

t2 150

t3 100

ID Score

t1 200

t2 150

ID Score

t2 150

t3 100

Prob DB

pw1

pw2

pw3

…The top-1 answer for each possible world

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Top-k Queries: Many Prior Proposals

 U-top-k [Soliman et al. ’07+

 Returns the most probable top k-answer

 U-rank-k [Soliman et al. ’07+

 At rank i, return the tuple with max prob of being rank i

 Probabilistic Threshold (PT-k) [Hua et al. ’08+

 Return all tuples t s.t. Pr(r(t)· k) ¸µ

 Global-top-k *Zhang et al. ’08+

 Return k tuples t with the largest Pr (r(t)· k) values.

 Expected Score
 Return k tuples t with the highest score(t)Pr(t)

 Expected Rank [Cormode et al. ’09+

 Return k tuples t with smallest Pr(pw) rpw(t) (rpw(t) =|pw|+1 if t pw)=2

Top-k Queries

 Which one should we use???

 Comparing different ranking functions

E-Score PT/GT U-Rank E-Rank U-Top

E-Score ---- 0.124 0.302 0.799 0.276

PT/GT 0.124 ---- 0.332 0.929 0.367

U-Rank 0.302 0.332 ----- 0.929 0.204

E-Rank 0.799 0.929 0.929 ---- 0.945

U-Top 0.276 0.367 0.204 0.945 ----

Normalized Kendall Distance: #reversals and #mismatch elements
lies in [0,1], 0: Same answers; 1: Disjoint answers

Real Data Set: 100,000 tuples, Top-100

Top-k Queries

 Which one should we use???

 Comparing different ranking functions

E-Score PT/GT U-Rank E-Rank U-Top

E-Score ---- 0.864 0.890 0.004 0.925

PT/GT 0.864 ---- 0.395 0.864 0.579

U-Rank 0.890 0.395 ----- 0.890 0.316

E-Rank 0.004 0.864 0.890 ---- 0.926

U-Top 0.925 0.579 0.316 0.926 ----

Synthetic Dataset: 100,000 tuples, Top-100

Normalized Kendall Distance: #reversals and #mismatch elements
lies in [0,1], 0: Same answers; 1: Disjoint answers

Our Approach

 Define two parameterized ranking functions: PRFw; PRFe

 .. that can simulate or approximate a variety of ranking functions

 PRFe much more efficient to evaluate (than PRFw)

Use PRFe to
approximate

Compute
directly

User

Represent as a PRFw

Preference information: e.g., a
ranking on a small dataset

A specific ranking function

Learn PRFw parameters

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Parameterized Ranking Function

• Weight Function: ! : T £ N ! C

• Parameterized Ranking Function (PRF)

Return k tuples with the highest values.

Parameterized Ranking Function
 !(t,i)= 1 : Rank the tuples by probabilities

 !(t,i)=score(t): E-Score

 PRF!(h):

 PT/GT-k :

 U-Rank:

The tuple with the largest value is the rank-j answer.

 PRFe(®): !(i)=®i where ®can be a real or a complex

number

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Computing PRF: Assuming tuple Independence

 Generating Function Method

 The coefficient of xk :

Ti-1: the set of tuples with scores higher than ti

¾: Boolean indicator vector

Computing PRF: Assuming tuple Independence

 Generating Function Method

 The coefficient of xk : Pr(r(t_i)=k)

 Algorithm:

 For i=1 to n

 Construct

 Expand

Ti-1: { t1, t2, … … , ti-1 }

Expand from scratch
O(n2)

O(n3) overall

Computing PRF: Assuming tuple Independence

 Generating Function Method

 The coefficient of xk : Pr(r(t_i)=k)

 Algorithm:

 For i=1 to n

 Construct

 Expand

Ti-1: { t1, t2, … … , ti-1 }

Can be improved to
O(n)

O(n2) overall

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Computing PRFe(®): Assuming tuple Independence

 Recall !(j)=®j

 Generating Function Method

 Therefore:

 Morevoer:

O(n) overallO(1)

No need to expand
the polynomial !!

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Computing PRF: Probabilistic And/Xor Trees

 Capture two types of correlations: mutual exclusitivity and
coexistence.

V

(t2,500)

V

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

And node:

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

Possible Worlds Pr

t4 0.02

t3 0.08

…….

t1, t4, t6 0.03

t1, t3, t6 0.018

…….

 Capture two types of correlations: mutual exclusitivity and
coexistence.

V

(t2,500)

V

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

And node:

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

Possible Worlds Pr

t4 0.02

t3 0.08

…….

t1, t4, t6 0.018

t1, t3, t6 0.012

…….

Pr=0.3*0.3*0.2=0.018

Computing PRF: Probabilistic And/Xor Trees

r(i)=j if and only if (1) j-1 tuples with higher scores appear

(2) tuple i appears

Pr(r(i)=j) = coeff of xj-1y

V

(t2,500)

V

VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

And node:

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

x x xy11

0.2+0.8x 1 0.1+0.2y+0.7x

F(x,y)=(0.2+0.8x)(0.1+0.2y+0.7x)

Computing PRF: Probabilistic And/Xor Trees

O(n3) overall

Can be
improved to
O(n2 log2n)

Computing PRFe(®): Probabilistic And/Xor Trees

Generating Function:

The coeff of xj-1y : cj = Pr(r(ti)=j)

Therefore:

No need to expand
the polynomial !!

V

(t2,500)

V
VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

And node:

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

x x xy11

We maintain only the numerical values of Fi(®,®) and Fi(®,0) at each node.

E.g. ®=0.6. We are computing F4(0.6,0.6)

Computing PRFe(®): Probabilistic And/Xor Trees

V

(t2,500)

V
VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

And node:

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

0.6 0.6 0.60.611

0.2+0.8*0.6 1 0.1+0.2*0.6+0.7*0.6

F4(0.6,0.6)=0.096*1*0.64

We maintain only the numerical values of Fi(®,®) and Fi(®,0) at each node.

E.g. ®=0.6. We are computing F4(0.6,0.6)

Computing PRFe(®): Probabilistic And/Xor Trees

V

(t2,500)

V
VV

(t1,950) (t6,20) (t5,30) (t4,150) (t3,200)

And node:

Xor nodes:

0.5 0.3 0.3 0.2 0.2 0.7

0.6 0.6 0.60.60.61

0.2+0.8*0.6 0.92 0.1+0.2*0.6+0.7*0.6

F5(0.6,0.6)=0.096*0.92*0.64

O(d) for each
new tuple

Overall
O(nlogn+nd)

We maintain only the numerical values of Fi(®,®) and Fi(®,0) at each node.

E.g. ®=0.6. Now we want to compute F5(0.6,0.6)

Computing PRFe(®): Probabilistic And/Xor Trees

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Approximating Ranking Functions

Approximating PRF! using PRFe

 Suppose

 Reduce to L individual PRFe computations

 Running time : O(nlogn+nL) (as opposed to O(n2))

Approximating Ranking Functions

 How to approximate !() by a linear combination of
exponentials?

 A scheme based on Discrete Fourier Transformation

 Use the largest L DFT coefficients

Ã(0),…,Ã(N-1) is the DFT of !(0),…,!(N-1)

Approximating Ranking Functions

Approximating w(x)=1 if x<=1000, 0 if x>1000

y=w(x)

DFT : Periodic !

Approximating Ranking Functions

Approximating w(x)=1 if x<=1000, 0 if x>1000

y=w(x)

DFT : Periodic !

DFT+Damping Factor:
Biased approximation

Adding a damping factor ´:

Approximating Ranking Functions

Approximating w(x)=1 if x<=1000, 0 if x>1000

y=w(x)

DFT : Periodic !

DFT+Damping Factor :
Biased approximation

DFT+DF+
Initial Scaling :
Unbiased

Initial Scaling : Perform DFT on a scaled sequence ¡́i!(i) i = 0; : : : ;N ¡ 1

Approximating Ranking Functions

Approximating w(x)=1 if x<=1000, 0 if x>1000

y=w(x)

DFT : Periodic !

DFT+Damping Factor :
Biased approximation

DFT+DF+
Initial Scaling :
Unbiased

DFT+DF+IS+
Extending&Shifting:
Unbiased and better
quality around origin

Extending and Shifting: Particular tailored for optimizing the
approximation quality around the origin.

Approximating Ranking Functions

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Other Results
 Learning the weight function for PRF! based user

preferences

 A binary search-like heuristic for learning PRFe(®)

 PRF computation on graphical models

A polynomial time algorithm when the junction
tree has bounded treewidth

– A nontrivial dynamic program combined with the
generating function method.

Outline

 Prior Proposals for Top-k Queries over ProbDB

 Parameterized Ranking Functions

 Computing PRF

 Independent Tuples

 Computing PRFe(®)

 Probabilistic And/Xor Trees

 Approximating Ranking Functions

 Other Results

 Experiments

Experiments

Comparing PRFe with other ranking functions for varying value of ®

Experiments

Approximation quality for approximating different
ranking functions using PRF^e functions

Experiments

Execution Time

Conclusions
 Proposed a unifying framework for ranking over probabilistic

databases through:

 Parameterized ranking functions

 Incorporation of user feedback

 Designed highly efficient algorithms for computing PRF and
PRFe

 Developed novel approximation techniques for approximating
PRFw with PRFe

