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Deep Neural Networks

• Tremendous success in practice
• Theory, several exciting recent results (still not so satisfying)
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DL is not robust: Adversarial Examples

• Adversarial examples in deep learning (first found in [Szegedy et al. 13])

• Accuracy drops to nearly zero in the presence of small adversarial perturbations 



When and How Deep Neural Networks Work?

Understand DL from theoretical perspectives
• Over-parametrized (traditional theories do not work directly)
• Highly Nonconvex, many local/global minima
• Commonly believed that the training algorithms (gradient-based 

algorithms) play important roles 
• Optimization
• Algorithm-dependent generalization
• Implicit bias (towards local/global min with interesting properties)

• Inductive bias
• Why CNN works well for image data?

• Deep learning may also fail
• Existence of adversarial examples
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• The optimization algorithm may implicitly bias the solutions to global minima 

with special properties.

• Implicit bias is particularly important in learning deep neural networks as “it 

introduces effective capacity control not directly specified in the objective” 

[Gunasekar et al. 18] (without explicit regularization and early stopping)

• Several such IBs have been found (one slide in my graduate course)

•

Implicit Bias
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Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: 𝑓𝑤 𝑥 = 𝑤𝑇𝑥.

Loss function: Logistic loss with L2 regularization.
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“find the solutions with smaller norm”

Explicit bias of GD with L2 regularization

𝑤1
𝑇𝑥 = 0 𝑤2

𝑇𝑥 = 0

Solution may not be unique

margin

Theorem (Rosset et al., 2004, informal).
When 𝜆 is small, the global minimizer of ℒ𝜆 𝑤 is close to the SVM solution.

min 𝑤 2

s. t. 𝑦𝑖𝑤
𝑇𝑥𝑖 ≥ 1

max-margin linear classifier
(presumably generalizes well)

From Kaifeng Lyu’s slides



Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: 𝑓𝑤 𝑥 = 𝑤𝑇𝑥.

Loss function: Logistic loss without L2 regularization.
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Various low-loss solutions exist!

Explicit bias of GD with L2 regularization

𝑤1
𝑇𝑥 = 0 𝑤2

𝑇𝑥 = 0

Solution may not be unique

Implicit without

Theorem [Soudry et al. 2017].
Even without explicit regularization, GD finds the max-margin linear classifier, 
regardless of the initialization. (SVM solution)

Does GD have a similar “implicit bias” on deep neural nets?



Normalized Margin

• Margin of 𝑥𝑛, 𝑦𝑛 : 𝑞𝑖(𝜃) = 𝑦𝑖𝑓𝜃(𝑥𝑖)
• Margin: 𝑞𝑚𝑖𝑛 𝜃 = min

1≤𝑖≤𝑛
𝑞𝑖(𝜃)

• We hope the margin to be large (smaller loss, better classification)

• But the margin can approach to infinity (by scaling) 

• So we consider the normalized margin (only consider the direction since the 

direction is enough to determine the prediction):

Maximize 𝑚

subject to
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How to define margin for (homogeneous) deep neural networks

𝑥 ∈ ℝ𝑑

𝜃

𝑓𝜃 𝑥 ∈ ℝ



Margin for Homogeneous Neural Nets?

𝑥 ∈ ℝ𝑑

𝜃

𝑓𝜃 𝑥 ∈ ℝ

Normalized Margin:

𝛾 𝜃 = min
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• Theoretically, margin-based generalized bounds are usually ∝
1

𝛾 𝜃
.

• Larger (normalized) margins lead better bounds (although could be loose) [Bartlett et al. 2017; Neyshabur et al. 2018]
• Empirically, large (normalized) margin (properly defined) positively correlates with generalization [Jiang et al. 2020].

“Neural net is 𝐿-homogeneous”:     𝑓𝑐𝜃(𝑥) = 𝑐𝐿𝑓𝜃(𝑥) for any 𝑐 > 0
E.g., 𝐿-layer ReLU networks and CNNs (without bias terms)

NOTE: Only the direction of 𝜃 really matters (for classification).

How to define margin for (homogeneous) deep neural networks

• Margin of 𝑥𝑛, 𝑦𝑛 : 𝑞𝑖(𝜃) = 𝑦𝑖𝑓𝜃(𝑥𝑖)

• Margin: 𝑞𝑚𝑖𝑛 𝜃 = min
1≤𝑖≤𝑛

𝑞𝑖(𝜃)

Gradient descent maximizes the margin of homogeneous neural networks, Lyu, L, ICLR 20



Smoothed Normalized Margin

• But the normalized margin is difficult to analyze 

• Consider smoothed normalized margin (change min to softmin)

• One can easily show

• So, as 𝜌 → +∞, we have ෤𝛾 → ҧ𝛾.

• In fact, we will show 𝜌 → +∞.

Exponential loss



Implicit Bias: Margin Maximization
• Consider the gradient flow

• Assume that we have fitted the training data at time 𝑡0.

Clarke subdifferential

Theorem: Smooth normalized margin increases monotonically.

• Lyu, L. 2020. ICLR 2020 oral.

Smoothed normalized margin 
(change min to softmin)



Theorem (Lyu, L. 2020., Ji, Telgarsky 2020.) The direction ෡𝜽

converges and for the limit direction of ෡𝜽, ෡𝜽/𝒒𝐦𝐢𝐧
෡𝜽

𝟏/𝑳
is 

a KKT point of (P).

Max-Margin Problem: (P) Classical SVM

First order (necessary) condition for a local optimal solution in a constrained 
optimization problem

Implicit Bias: Margin Maximization



Experiments

CNN, MNIST, constant learning rate
conv-32 with filter size 5×5, max-pool, conv-64 with filter size 3×3, max-pool, fc-1024, fc-10

Standard architecture used in MNIST Adversarial Examples Challenge

Normalized Margin 
increases (slowly)



Experiments

• Constant LR: Gradient very small, loss decreases very slowly 

• We can increase the learning rate! (based on the loss)

• SGD with Loss-based Learning Rate.
• Training loss so small. modify Tensorflow to deal with numerical issues



Implicit bias: Margin Maximization

• The implicit bias of margin maximization and convergence to KKT point
are fundamental aspects of the gradient method in training deep neural 
networks
• Use to establish the simplicity bias [Lyu, Li, Wang,  Arora, NeurIPS 20]
• Understand kernel and rich regime [Woodworth et al. COLT 20]
• Relation to min norm solution [Poggio et al. PNAS 20]
• Benign overfitting in linear networks [Frei, Vardi, Bartlett, Srebro, 

COLT 23]
• Understand Grokking [Lyu et al. ICLR 24]
• Double-edge sword: Generalization vs. Robustness [Frei, Vardi, 

Bartlett, Srebro, NeurIPS 23]
• …….
• Feature Averaging [Li, Pan, Lyu, L 24]
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Adversarial Examples
• Adversarial examples in deep learning (first found in [Szegedy et al. 13])

• Accuracy drops to nearly zero in the presence of small adversarial perturbations

• SOTA DL classifiers (even modern MLLMs) suffer from adversarial attacks

How Robust is Google's Bard to Adversarial Image Attacks?



Adversarial Attack & Defense
• Untargeted attack: move x0 away from its current class.
• Targeted attack: move x0 to the target class Ct .
• Large body of work on attack and defense
• Building a robust classifier is still a major open problem 

in DL

RobustBench：https://robustbench.github.io/

Figures from https://engineering.purdue.edu/ChanGroup/ECE595/files/chapter3.pdf

• Geometrically, every training sample (as well as testing sample) 

is very close to the decision boundary.

• There exists a relatively robust classifier (such as human). 

But no DNN can find one. But WHY??



Margin maximization and Robustness

• Robustness and normalized margin

• If q is 𝛽-Lipschitz, it is easy to see that  (see e.g.,[Sokolic et al., 2017])

• So larger normalized margin perhaps implies better robustness

The robust accuracy
(the percentage of data with robustness ≥ 𝝐)

Hence, training longer is useful in improving the 
robustness (but only slightly)…
It appears that the implicit bias of margin 
maximization helps adversarial robustness
However…(see the next section)
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Feature Averaging
Feature averaging
• Multiple discriminative features capable of classifying data exist
• But neural networks trained by gradient descent tend to learn the average 

(or certain combinatorial) of these features, rather than distinguishing 
each feature individually.

E.g., to classify a dog and a car, there are many discriminative features (such 
as tires, ears, eyes, glass, even background, lighting etc…)
But the features learnt by neural networks (i.e., features learnt before the 
final layer classifier) tend to contain a little bit of each



https://www.ias.edu/sites/default/files/math/special_year_workshops/amadry.pdf

The adv noise is in fact a useful 
(but nonrobust) feature for cat

Robust and Nonrobust features
Robust feature: We refer to f as a robust feature if, under adversarial perturbation (for some specified 
set of valid perturbations ∆), f remains useful for classification.
Non-robust feature: A useful, non-robust feature is a feature which is useful but is not robust (not 
resilient to adversarial perturbation)

Adversarial Examples Are Not Bugs, They Are Features

Can we build a theoretical model in which we can prove things rigorously? (e.g., show NN can 
find only nonrobust features)



A Theoretical Model: Data Distribution
Data distribution:  
• 𝐷𝑏𝑖𝑛𝑎𝑟𝑦 on 𝑅𝑑 × {−1, 1} that consists of 𝑘 clusters (𝑘 features)

• positive and negative clusters are balanced
• A sample (x,y) in Cluster i: 

• x sampled from the Gaussian with mean µ(𝑖) ∈ 𝑅𝑑 and covariance 𝜎2𝐼𝑑
• y are labeled by {−1, 1} depending it is a positive or negative cluster

• µ(𝑖) for all 𝑖 ∈ 𝑘  are orthogonal and µ 𝑖 = Θ( 𝑑) (can be relaxed slightly)

2-Layer Relu network:
• For simplicity, fix the second layer

µ(1)

µ(2)

µ(3)

µ(4)

• Loss function (logistic loss):

• Initialization:

• Gradient Descent (choose small LR):

Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks. Manuscript. Joint work with Binghui Li, Zhixuan Pan, Kaifeng Lyu



Robust solution exists

• It is easy to show a robust solution exists with robust radius O( 𝑑)

• Let each neuron capture one cluster (feature)

• Use the bias term b to filter out intra/inter cluster noise

Construction similar to that in [Vardi et al. 22] and [Frei et al. 24]

µ(1)

µ(2)

µ(3)

µ(4)

w3,1 ∝ µ(3)
𝑏 = −2

If the input is a point in cluster 3, then
the 3rd neuron will be activated, and 
other neurons are not activated

−1 −1−11 1 1
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GD learns Average Features
Lemma: (Weight Decomposition) During training, we can decompose the weight w
as linear combination of the features (and some noise)

Theorem: (Feature Averaging) For sufficiently large d, suppose we train the model 
using the gradient descent. After 𝑇 = Θ(𝑝𝑜𝑙𝑦(𝑑)) iterations, with high probability 
over the sampled training dataset S, the weights of model 𝑓𝜃(𝑇) satisfy

I. The model achieves perfect standard accuracy:

II. GD learns averaged features:

Large coeffs for 
the same class

Small coeff for 
the other class

No large coeff is much 
larger than others

We partially answer the conjecture in [Min and Vidal, ICML 24]



Average Features are Non-robust Features

Thm: For the weights in a feature-averaging solution, for any choice of bias b, the 

model has nearly zero 𝛿−robust accuracy for any robust radius 𝛿 = 𝜔( 𝑑/𝑘)

(Recall that a robust solution exists with robust radius O( 𝑑) )

Intuition: for average features, most same-class neurons will be activated, resulting a 
much larger gradient norm (even though the margin 𝑦𝑖𝑓(𝑥𝑖) is similar to that in a 
robust solution)

−1 −1−11 1 1

large small



Detailed feature-level supervisory label 

• One can show if one is provided detailed feature-level labels, some 2-layer 
NN can learn feature decoupled solutions (which is more robust)

• Only 1 coefficient is large.
• The neural network learns the 

individual feature



Experiments

Each element in the matrix, located at position 

(i, j) is the average cosine value of the angle 

between the weight vector of ith neuron and 

the feature vector 𝜇𝑗 of the j-th feature.

We create a binary classification task from the CIFAR-10 

dataset
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Relation to properties of KKT points

• Vardi et al. (NeurIPS 2022) and Frei et al. (NeurIPS 2024) show that every KKT 

point is at most 𝑂( 𝑑/𝑘)-robust for a very similar data distribution (but a 

𝑂( 𝑑)-robust solution exists)

• The limiting case (not sure how long one can reach a KKT point). Empirically, 
some KKT requires very long training time (for certain initializations)

• It is less intuitive what a KKT point look like



Connection to Simplicity Bias

Shah et al. [2020]

black: max-margin
orange: linear

One can show GD on a 2-layer NN (with small init) finds a 
linear classifier theoretically.
(A linear classifier only maximize the margin locally. Clearly it 
is not a global margin maximizer)

Lyu et al. Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias

The Pitfalls of Simplicity Bias in Neural Networks

KKT ≠ global optimality!

Use KKT as a tool to deduce other properties of neural nets (e.g., simplicity bias)..



Connection to lower bound examples in [Li et al. 22]

Why robust generalization in deep learning is difficult: Perspective of expressive power.

[Li et al. 22] presented a binary classification example in which a simple linear classifier 
can achieve perfect clean accuracy, but nearly zero robust accuracy, and a robust 
classifier exists (but with much larger VC-dimension) 

Nonrobust
feature

• Their result is from the expressivity perspective (the lower bound instance requires exponentially 
many examples in both sides)

• Our results is from the training perspective (the instance only contains polynomial number of samples)



Connection to Dimpled Manifold Models

The Dimpled Manifold Model of Adversarial Examples in Machine Learning

Dimpled Manifold Models [Shamir et al.]: Only empirical facts.

Almost all points are close to decision boundaries (but not classified correctly) due to isoperimetry 
property in high dim 

We provide a theoretical model and a rigorous proof that explains the fact in very similar data setting



Final Remarks
• Human is more robust to small perturbations

• No adv training for human
• Adv training is slow (can we use std training to get a robust model?)

• DL classifiers only use the class labels as the supervisory information 

• More detailed and structured supervisory information for human
• Patches of images are “Tokenize” to concepts 

• More detailed labeling in large scale is possible in the era of MLLM 
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Jian Li  李建
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Relation to properties of KKT points
• Vardi et al. (NeurIPS 2022) and Frei et al. (NeurIPS 2024) show that every KKT point is at most 

𝑂( 𝑑/𝑘)-robust for a very similar data distribution (but a 𝑂( 𝑑)-robust solution exists)
• The limiting case (not sure how long one can reach a KKT point). Empirically, some KKT requires 

very long training time (for certain initializations)
• It is less intuitive what a KKT point look like

a (universal) attack direction

Attack along direction 𝑦𝒛 is successful
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