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Deep Neural Networks

* Tremendous success in practice
« Theory, several exciting recent results (still not so satisfying)

The Man Bebind the Google Brain: Andrew Ny Meet Facebook's Head of Artificial Intelligence
Andthe Questforthe New Al i

Researcher Dreams Up Machines
That Learn Without Humans

) 10 BREAKTHROUGH
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i ImageNet |K competition, fall 20

Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2|
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DL Is not robust: Adversarial Examples

« Adversarial examples in deep learning (first found in [Szegedy et al. 13])

+.007 x

“panda” noise “gibbon”

577% confidence 99.3% confidence

« Accuracy drops to nearly zero in the presence of small adversarial perturbations



When and How Deep Neural Networks Work?

Understand DL from theoretical perspectives
« Qver-parametrized (traditional theories do not work directly)
« Highly Nonconvex, many local/global minima
« Commonly believed that the training algorithms (gradient-based
algorithms) play important roles
« Optimization
« Algorithm-dependent generalization
- Implicit bias (towards local/global min with interesting properties)
 Inductive bias
« Why CNN works well for image data?
« Deep learning may also fail
- Existence of adversarial examples
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Implicit Bias

« The optimization algorithm may implicitly bias the solutions to global minima
with special properties.

« Implicit bias is particularly important in learning deep neural networks as “it
Introduces effective capacity control not directly specified in the objective”

« Several such IBs have been found (one slide in my graduate course)

Outline

Various implicit bias of gradient algorithms
« Margin Maximization
« Simplicity Bias
« Simple classification boundaries
» Low rank solutions
« Low frequency solutions
« Early phase of GD: like a linear model
« Feature Averaging (lead to nonrobust solutions)
 Sharpness Minimization
« Grokking
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Explicit bias of GD wi

th L2 regularization

wix=0 wlx =0
L P ®
o
L] ® 9 i.'
oo °
«—>® @
margin® o

Solution may not be unique

Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: f,,(x) = wlx.
Loss function: Logistic loss with L2 regularization.

1 E " T A 2
Ly(w) ==/ 1{’(in X)+§||W||z
i=

“find the solutions with smaller norm”

Theorem (Rosset et al., 2004, informal).
When 1 is small, the global minimizer of £;(w) is close to the SVM solution.

min
S. t.

Iwll,
ywlx; > 1

—

max-margin linear classifier
(presumably generalizes well)

From Kaifeng Lyu’s slides



Implicit without
Exphett bias of GD wath L2 regularization

wix=0 wix =20
[ ] . e ® ®
® e
® o ® ° o .'.
@ o ™ ".
® ®
® ® ° .

Solution may not be unique

Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: f,,(x) = wlx.

Loss function: Logistic loss without L2 regularization.

L(w) = %2?=1£(yinx) + %:&@%

Various low-loss solutions exist!

Theorem [Soudry et al. 2017].

regardless of the initialization.

Even without explicit regularization, GD finds the max-margin linear classifier,

(SVM solution)

Does GD have a similar “implicit bias” on deep neural nets?




Normalized Margin

; —
Minimize 2] |wl|? Maximize m

, T _ subject to i > — Vi
subject to y;(w'x; +b) > 1 Vi [lw]] 2
How to define margin for (homogeneous) deep neural networks fo (x) ER
- 0
* Margin of (xp, y): q:(6) = yifo(x;) A
* Margin: gmin(6) = min g;(6) x € R4

 We hope the margin to be large (smaller loss, better classification)
e But the margin can approach to infinity (by scaling)

* S0 we consider the normalized margin (only consider the direction since the
direction is enough to determine the prediction):



Margin for Homogeneous Neural Nets?

How to define margin for (homogeneous) deep neural networks

= Margin of (xp, y): q:(0) = yife(x;)
« Margin: q,,;»(6) = min q;(0)

1<i<n

y : " L fg(X) €ER
Neural net is L-homogeneous™  f.g(x) = c”fg(x) foranyc >0
E.g., L-layer ReLU networks and CNNSs (without bias terms) m

_ N — x € R?
NOTE: Only the direction of 8 really matters (for classification).

Normalized Margin:
0 (6
/0= i (1) = i 22

1=tz T\ o1,

Theoretically, margin-based generalized bounds are usually « ﬁ.

Larger (normalized) margins lead better bounds (although could be loose) [Bartlett et al. 2017; Neyshabur et al. 2018]
Empirically, large (normalized) margin (properly defined) positively correlates with generalization [Jiang et al. 2020].

Gradient descent maximizes the margin of homogeneous neural networks, Lyu, L, ICLR 20



Smoothed Normalized Margin

« But the normalized margin is difficult to analyze
« Consider smoothed normalized margin (change min to softmin)

i 1 1 al
f}/(@) — p—L lOg Z log Z = — log (Z e_qn)

n=1

_ Exponential loss
* One can easily show

y—p FlogN <7 <7

« So,asp — +oo,we have y - v.
 In fact, we will show p —» +oo.



TaY I - I I I " Smoothed normalized margin
Implicit Bias: Margin Maximization e
 Consider the gradient flow 3 3 1
’ 7(6) := p~"log
d@(t) 0 N
——= € —0°L(0(1)) forae. t >0 1 o
dt I~ logZ:—log Zle
Clarke subdifferential "

* Assume that we have fitted the training data at time ¢,.

Theorem: Smooth normalized margin increases monotonically.

I. Fora.e.t>tg, dj > 0;

2. Fora.e.t > tg, ezther Y > 0or 42 =0;

(&) = A ()] = 0.

If U(-) is the exponential or logistic loss, then for t > t,

L(t) =0 (t(logt;—Q/L) and p = 0((logt)*/L).

Lyu, L. 2020. ICLR 2020 oral.



Implicit Bias: Margin Maximization

Max-Margin Problem: (P) Classical SVM
. ]- 2 ... 1 2
min o 16]15 Minimize §||w||
st. gn(0)>1  Vn€[N] subject to y;(wlx; +b)>1 Vi

Theorem (Lyu, L. 2020., Ji, Telgarsky 2020.) The direction 6

converges and for the limit direction of 8, @/qmin(ﬁ)lﬂ iS
a KKT point of (P).

Definition A feasible point @ of (P) is a KKT point if there exist A1, ..., Ay > 0 such that

1. 0 — Zle Anhy, = 0 for some hy, ..., hy satistying h,, € 0°¢,(0);
2. Vn € [N]: \,(gn(0) — 1) = 0.

First order (necessary) condition for a local optimal solution in a constrained
optimization problem



Experiments

—— |r=0.01, w/ bias Ir=0.01, w/o bias
100% - I
C 1.50 X 10_3'
> 99%] 5
© 0 _
= 0 © 1,00 1073 : :
S 98% 3 s !\Iormallzed Margin
Y 2 T o50x10-3] Increases (slowly)
o 97% = N
< 'S o ) R
€ o960 s £ 0.00x10 3
© o
_
950 S —0.50 x 10731
0
=0 100 10° 10 102 10® 10° 10° 10 102 10® 10°
#epochs #epochs #epochs
(a)

CNN, MNIST, constant learning rate
conv-32 with filter size 5x5, max-pool, conv-64 with filter size 3x3, max-pool, fc-1024, fc-10
Standard architecture used in MNIST Adversarial Examples Challenge



Experiments

—— loss-based Ir, w/ bias loss-based Ir, w/o bias
1004
- 1.50x1073]
10—200_ @ Mwﬁ‘
? © 1.00x 1073 e
o £ e
-400 | e
=10 © 050x1073|
b= N
© 10600 £ 0.00x1073|
+ -
O |
10800, S _0.50x1073]
|
0 2500 5000 7500 10000 0 2500 5000 7500 10000
#epochs #epochs
(b)

« Constant LR: Gradient very small, loss decreases very slowly
« We can increase the learning rate! (based on the loss)
« SGD with Loss-based Learning Rate.

« Training loss so small. modify Tensorflow to deal with numerical issues



Implicit bias: Margin Maximization

* The implicit bias of margin maximization and convergence to KKT point
are fundamental aspects of the gradient method in training deep neural
networks

Use to establish the simplicity bias [Lyu, Li, Wang, Arora, NeurlPS 20]
Understand kernel and rich regime [Woodworth et al. COLT 20]
Relation to min norm solution [Poggio et al. PNAS 20]

Benign overfitting in linear networks [Frei, Vardi, Bartlett, Srebro,
COLT 23]

Understand Grokking [Lyu et al. ICLR 24]

Double-edge sword: Generalization vs. Robustness [Frei, Vardi,
Bartlett, Srebro, NeurlPS 23]

Feature Averaging [Li, Pan, Lyu, L 24]
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Adversarial Examples

« Adversarial examples in deep learning (first found in [Szegedy et al. 13])
« Accuracy drops to nearly zero in the presence of small adversarial perturbations
« SOTA DL classifiers (even modern MLLMs) suffer from adversarial attacks

Image description

i
i “Describe thisimage.” i

“The image shows a
group of people walking
down a dirt road. There
are four people in the
group, two adults and
two children. The adults
are in front...”

+.007 x

“The image shows a
common ostrich walking

across a dirt road. The
ostrich is facing the
camera and is about to
Natural image take a step forward...”

TTIE

-

“panda” noise “gibbon”

57.7% confidence 99.3% confidence

“The image you sent me
is a promotional poster
for Lee Hyori's 2006
album, Stylish...E. Her
hair is styled in a long,

“The image you sent me
shows a group of soldiers
holding guns. They are
wearing military uniforms
and are standing in a

W
Thsimage b
Lewr 1o

ee 1o mnes

classified as classified as Natural image “1 can't process this file.” Adversarial image  \jine..”
Sto S| n Figure 1: Adversarial attacks against Google’s Bard. We consider attacks on image description and
p g M ax Speed 1 OO two defenses of Bard — face detection and toxicity detection.

Adversarial examples for traffic signs (picture by Chen and Wu [71]). How Robust is Google's Bard to Adversarial Image Attacks?



Adversarial Attack & Defense

Untargeted attack: move x0 away from its current class.
Targeted attack: move x0 to the target class Ct .

Large body of work on attack and defense

Building a robust classifier is still a major open problem =
in DL

4

Figures from https://engineering.purdue.edu/ChanGroup/ECE595/files/chapter3.pdf

Geometrically, every training sample (as well as testing sample)
IS very close to the decision boundary.

There exists a relatively robust classifier (such as human).
But no DNN can find one. But WHY??

RoBUSTBENCH

Leaderboard: CIFAR-10, £, = 8/255, untargeted attack

AutoAttack
Standard
Method robust
ccccccc y
accuracy
93.27% T71.07%
Better Diffusion Models Further Improve
Adversarial Training 93. 25% 0. 698
50M symf
MixedNUTS: Training-Free Accuracy
Robustness Balance via N
95.19% T0.03%
Improving the Accuracy-Robustness Trade-off
of Classifiers via Adaptive Smoothing
It uses an ensemble of networks. The robust base classifier uses Sl 28 a8
560 synthetic images.
Decoupled Kullback-Leibler Divergence Loss
. 92.16% 67.73%
Truses additional heric images in training.
Q2. 44% a7, 31%

Fixing Data Augmentation to Improve

Leaderboards

Paper

Best knowm
robust

accuracy

71074

0. 698

69.71%

68, 06%

A7, 73%

a7.31%

Contribute

Extr

a
data

Search:

Architectur

RaWideResNet-
70-16

WideResNet-70-

16

ResNet-152 +

WideResNet-70-

ResNet-152 +

WideResNet-7o0-

16 + mixing
network

WideResNet-
2810

‘WideResNet-
28-10

Model Zoo g7

BMVC 2023

ICML 2023

arXiv, Feb
2024

SIMODS
2024

arXiv, May
2023

ICML 2023

RobustBench: https://robustbench.github.io/



Margin maximization and Robustness

accuracy (train)

100%

98%

* Robustness and normalized margin

« If gis B-Lipschitz, it is easy to see that (see e.g.,[Sokolic et al., 2017])

RQ(Z) >

(%)
15

« So larger normalized margin perhaps implies better robustness

—— model-1 model-2  —— model-3  —— model-4 model-5 model name | number of epochs  train loss  normalized margin
100% model-1 38 10~ 10-04 5.65 x 107°
model-2 75 10~ 1012 9.50 x 107°
80% model-3 107 10~20-07 1.30 x 10~*
model-4 935 1012001 4.61 x 1074
60% model-5 10000 1088151 1.18 x 1073

96%

94%

92%

90%

40%

20%

Hence, training longer is useful in improving the

0%

robustness (but only slightly)--

0.0 0.2 0.4 0.6 0 2 4 6
£ £

The robust accuracy
(the percentage of data with robustness = €)

It appears that the implicit bias of margin
maximization helps adversarial robustness
However:-:(see the next section)
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Feature Averaging

Feature averaging

* Multiple discriminative features capable of classifying data exist

* But neural networks trained by gradient descent tend to learn the average
(or certain combinatorial) of these features, rather than distinguishing
each feature individually.

E.g., to classify a dog and a car, there are many discriminative features (such

as tires, ears, eyes, glass, even background, lighting etc...)

But the features learnt by neural networks (i.e., features learnt before the

final layer classifier) tend to contain a little bit of each

Convolution Fully connected
A A

A

;

//

: f%éf
7AW\
N A

NEAs

7\
Ty

S
s

AN

- QOO0

N
SEY

NVe




Robust and Nonrobust features

Robust feature: We refer to f as a robust feature if, under adversarial perturbation (for some specified
set of valid perturbations A), f remains useful for classification.
Non-robust feature: A useful, non-robust feature is a feature which is useful but is not robust (not

resilient to adversarial perturbation) The adv noise is in fact a usefl
(but nonrobust) feature for cat

Robust features Non-robust features
Correlated with label ~ Correlated with label on average,
even with adversary but can be flipped within £, ball

meaningless

Ears Snout perturbation

Input
Adversarial Examples Are Not Bugs, They Are Features But: This is only a “human” perspective @

https://www.ias.edu/sites/default/files/math/special_year_workshops/amadry.pdf

Can we build a theoretical model in which we can prove things rigorously? (e.g., show NN can
find only nonrobust features)



A Theoretical Model: Data Distribution

o u(1)
Data distribution: o2 ©
Dpinary ON R% x {—1,1} that consists of k clusters (k features) o (%)
@
e positive and negative clusters are balanced o

* Asample (x,y) in Cluster i:
* x sampled from the Gaussian with mean p(i) € R% and covariance 021,
* yare labeled by {—1, 1} depending it is a positive or negative cluster
e u(i) foralli € [k] are orthogonal and ||u(i)|| = O0(v/d) (can be relaxed slightly) ® ‘X

2-Layer Relu network:
* For simplicity, fix the second layer

| ‘ |
' = — ReLU - b1,) — — ReLLU s b 1.,
fo(x) = Z eLU((wy -, x) + b1 ) — Z eLU((w_1,,x) +b_1,)

re[m)] re|[m]
- ]_ T |
* Loss function (logistic loss):  £(0) := - Z( (yifo (xi)) l(q) =log (1l +e 9)
=1

) itiali 1 . 2 2 1 2 2 1
Initialization: wy, ~ N(0,03,1s) 0, = 5 bs, ~ N(0,0%) o, = 32

* Gradient Descent (choose small LR): 6,,, =60, — nVL(60,)

Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks. Manuscript. Joint work with Binghui Li, Zhixuan Pan, Kaifeng Lyu



Robust solution exists

* |t is easy to show a robust solution exists with robust radius 0(+/d)
* |Let each neuron capture one cluster (feature)

 Use the bias term b to filter out intra/inter cluster noise

If the input is a point in cluster 3, then
the 3 neuron will be activated, and
other neurons are not activated

w31 X u(3)
b=-=-2

Construction similar to that in [Vardi et al. 22] and [Frei et al. 24]
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GD learns Average Features

Lemma: (Weight Decomposition) During training, we can decompose the weight w
as linear combination of the features (and some noise)

FORONS SEUNAES SP IS S )

J1ET+ JET- 1€ [N

Theorem: (Feature Averaging) For sufficiently large d, suppose we train the model
using the gradient descent. After T = O(poly(d)) iterations, with high probability
over the sampled training dataset S, the weights of model fyry satisfy

l.  The model achieves perfect standard accuracy: P, ,)p,,.. [seu(fo)(x) =y =1 —o(1)

II. GD learns averaged features:

(T)
v ~ iy - S,7 :
B T = (), A(T)J <O01)Nse{-1,+41}re[m],j#ke T,
Syl

Large coeffs for Small coeff for  No large coeff is much
the same class the otherclass  |arger than others

We partially answer the conjecture in [Min and Vidal, ICML 24]



Average Features are Non-robust Features

Thm: For the weights in a feature-averaging solution, for any choice of bias b, the
model has nearly zero 6—robust accuracy for any robust radius § = w(\/d/k)

(Recall that a robust solution exists with robust radius 0(vd) )

Intuition: for average features, most same-class neurons will be activated, resulting a

much larger gradient norm (even though the margin y;f (x;) is similar to that in a
robust solution)

_ (t) (t) (1)
’UJSQ —_— ws(‘),) + Z AS,I,J'IJ‘J + Z A.S','l‘,_’}- LLJ + Z O.s,'l',iEi
JE€ET: jET- i€[N]

large small



Detalled feature-level supervisory label

* One can show if one Is provided detalled feature-level labels, some 2-layer
NN can learn feature decoupled solutions (which i1s more robust)

Theorem 3.5 (Multiple-Information Helps Achieving Feature-Decoupling Regime). For sufficiently
large d, suppose we train the model using the gradient descent algorithm starting from the random
initialization, then after T' = O(poly(d)) iterations, with high probability over the sampled training
dataset Z, the weights of model FY) satisfy:

* Multiple standard accuracy is perfect: Pz ) D,i. [arg;maxielk] I }TJ () # y} = o(1);

* The network achieves feature decoupling:

M) = Q)N = 6(1), i € [k, 5 € [k]\ {i}

* Only 1 coefficient is large.
* The neural network learns the
individual feature



Experiments

Each element in the matrix, located at position
(i, j) is the average cosine value of the angle
between the weight vector of ith neuron and
the feature vector y; of the j-th feature.

025
020
ni1s
&
010
nas
0.00
=005
a i 4 & B

2 4 L] 8

Figure I: Illustration of Feature Averaging and Feature Decoupling .

We create a binary classification task from the CIFAR-10

MNIST CIFAR-10
100
oy 20 2 20
T T
5 5
o o
o (V-]
= &0 -
ki ki
= = a0
7 4 7
-l -l
o o
[} o 0
o« —_— 10 o« —_— 10
—_— 2 —_—2 —
0 S
0.0 0.4 oe 1% 0 0.o 0 24 22 44

12 1lE z.
Perturbation Radius Perturbation Radius

Figure 2: Robustness Improvement on MNIST and CIFAR10 .
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Relation to properties of KKT points

* Vardi et al. (NeurlPS 2022) and Frel et al. (NeurlPS 2024) show that every KKT

point is at most O(y/d/k)-robust for a very similar data distribution (but a
0 (v/d)-robust solution exists)

* The limiting case (not sure how long one can reach a KKT point). Empirically,
some KKT requires very long training time (for certain initializations)

* Itis less intuitive what a KKT point look like



Connection to Simplicity Bias

Use KKT as a tool to deduce other properties of neural nets (e.g., simplicity bias)..

KKT —+ gIObaI Optlmallty| Non-symmetric Data (with bias)

Simplicity Bias in Neural Networks (NNs)

‘1{*_?%7##\}}3‘P$Li~u

Feature ¢,

Feature ¢,

Figure 1: Simple vs. complex features

The Pitfalls of Simplicity Bias in Neural Networks

1 200000 RDOORRODEN
0 ntcttttoo.cti--> black: max-margin
orange: linear
-1 4 000D ORRREON
2 -1 0 1 2

One can show GD on a 2-layer NN (with small init) finds a
linear classifier theoretically.

(A linear classifier only maximize the margin locally. Clearly it
Is not a global margin maximizer)

Lyu et al. Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias



Connection to lower bound examples in [Li et al. 22]

[Li et al. 22] presented a binary classification example in which a simple linear classifier
can achieve perfect clean accuracy, but nearly zero robust accuracy, and a robust
classifier exists (but with much larger VC-dimension)

ra= 0.5 @ @ @
Nonrobust i m m £ m £ N
- - OT 000
* Their result is from the expressivity perspective (the lower bound instance requires exponentially

many examples in both sides)
e Qurresults is from the training perspective (the instance only contains polynomial number of samples)

Why robust generalization in deep learning is difficult: Perspective of expressive power.



Connection to Dimpled Manitold Models

Dimpled Manifold Models [Shamir et al.]: Only empirical facts.

Almost all points are close to decision boundaries (but not classified correctly) due to isoperimetry
property in high dim

We provide a theoretical model and a rigorous proof that explains the fact in very similar data setting

The Dimpled Manifold Model of Adversarial Examples in Machine Learning



Final Remarks

* Human is more robust to small perturbations

* No adv training for human
* Adv training i1s slow (can we use std training to get a robust model?)

DL classifiers only use the class labels as the supervisory information

More detailed and structured supervisory information for human
* Patches of images are “Tokenize” to concepts
More detailed labeling in large scale Is possible in the era of MLLM

A person Is standing al 2 ptzxa countes,
wingspan swoops dows from the sky, let- hoiding a gigantic quaster the stze of a
ling out 2 plercing call as It approaches ptzza. The cashler, wide-eyed with as-
2 weathered scarecrow In a sunis feid tonishment, hands over a timy, quarer-
The scarecrow, dressed in tattered choth- stzed pteza In return. The background
Ing and a straw hat, appears to trembile, features various plzza loppengs md other
almast as 1f 1t's coming to lfe in fear of customers, all of them ogually amaxsd by
the unussal transaction.

the appevachag bird




Thanks

Jian Li =g
lapordge@gmail.com

Wechat id: lapordge
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Relation to properties of KKT points

* Vardi et al. (NeurlPS 2022) and Frel et al. (NeurlPS 2024) show that every KKT point is at most

0(,/d/k)-robust for a very similar data distribution (but a 0(vd)-robust solution exists)

The limiting case (not sure how long one can reach a KKT point). Empirically, some KKT requires
very long training time (for certain initializations)
* [tis less intuitive what a KKT point look like

Theorem 4.2. Lete, 6 € (0,1). Let S = {(xz, y;) 1, CR? x {—1,1} be a training set drawn i.i.d.
from the distribution Dejussers, where n > k1n?(d). We denote Q4 = {q € [k] : y'9D =1} and Q_ =

{q € [k] : y'9 = —1}, and assume that min { Q] ‘Q | l > c for some ¢ > 0. Let Ng be a depth-2
ReLU network such fhEJ = [Wi,..., W, b v] is a KKT point oﬁ Problem (2). Provided d is suf-

ficiently large such that 1 < 1dlﬂ(d) and n < min { \/— e?/32 \/_ . dm(d)/4, ; . dn(d)/2 }

3

3

with probability at least 1 — 0 over S, there is a vectoﬁ zZ=1- Eje[k:] y9) ) v}ith n > 0 and
/d
Iz]| < O( /Cgk)’ such that a (universal) attack direction

Y
Attack along direction yz is successful
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