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Deep Learning Theory

* Tremendous success in practice
« Theory, exciting recent progress (still not so satisfying)
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Deep Learning Mysteries

« Qver-parametrized (traditional theories do not work directly)

« Highly Nonconvex, many local/global minima

« Commonly believed that the training algorithms (gradient-based
algorithms) play important roles (not just the network architectures)
« Optimization
« Algorithm-dependent generalization
- Implicit bias (towards local/global min with interesting

properties)

 Inductive bias
« Why CNN works so well for image data?

« Many useful tricks
« Dropout, batchnorm, layernorm, initialization

- Existence of Adversarial Examples



Adversarial Examples

« Adversarial examples in deep learning (first found in [Szegedy et al. 13])
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« Accuracy drops to nearly zero in the presence of small adversarial perturbations

« Geometrically, every training sample (as well as testing sample) is very close to
the decision boundary.

« Very intriguing phenomena (beyond safety issue)
* Robust decision boundary exists (Human is a robust classifier)
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Implicit Bias

« The optimization algorithm may implicitly bias the solutions to global/local
minima with special properties.

« Implicit bias is particularly important in learning deep neural networks as “it
Introduces effective capacity control not directly specified in the objective”

« Several such IB have been found (one slide in my graduate course)

Outline

Various implicit bias of gradient algorithms
« Margin Maximization
« Simplicity Bias
« Simple classification boundaries
» Low rank solutions
« Low frequency solutions
« Early phase of GD: like a linear model
« Feature Averaging (lead to nonrobust solutions)
 Sharpness Minimization
« Grokking




Explicit bias of GD with L2 regularization

T - Linearly Separable Data:
wix =0 wyx =0 Labels are generated by an unknown linear classifier.
.' . . ° . K Linear model: f,,(x) = wlx.
o : . ) ’ :.'. ® | |Loss function: Logistic loss with L2 regularization.
Solution may not be unique “find the solutic;wls with smaller norm”

Theorem (Rosset et al., 2004, informal).
When 1 is small, the global minimizer of £;(w) is close to the SVM solution.

min lw|l- max-margin linear classifier
s.t. ywTx; =1 (solving the unconsjcramed optimization =
the constrained program)

SVM:

adapted from Kaifeng Lyu’s slides



Implicit without
Exphett bias of GD wath L2 regularization
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Solution may not be unique

Linearly Separable Data:
Labels are generated by an unknown linear classifier.

Linear model: f,,(x) = wlx.

Loss function: Logistic loss without L2 regularization.

L(w) = %2?=1£(yinx) + %:&@%

Various low-loss solutions exist!

Theorem [Soudry et al. 2017].

regardless of the initialization.

Even without explicit regularization, GD finds the max-margin linear classifier,

(SVM solution)

Does GD have a similar “implicit bias”™ on deep neural nets?
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Margin Maximization for DNN?

Does GD have a similar “implicit bias” on deep neural nets?
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Solution may not be unique

How to define margin for DNN:

« Margin of (x,, ¥n): q:(0) = yifo(x;)
« Margin: g,,;,,(6) = min q;(8)

1<isn



Margin for Homogeneous Neural Nets

“‘Neural net is L-homogeneous™  f.g(x) = c“fa(x) forany c >0 fa(x) ER
E.g., L-layer ReLU networks and CNNs (without bias terms) m
© Margin of Cen, yn): q:(8) = ¥ifs (x2) x € R?

*  Margin gmin(6) = min q;(6)

NOTE: Only the direction of 8 really matters (for classification).

Normalized Margin:

y(0) = min g; v = min 7:(6)
1<isn \[|0]], 1<i<n ||0]|5

Theoretically, margin-based generalized bounds are usually « ﬁ.

Larger (normalized) margins lead better bounds (although could be loose) [Bartlett et al. 2017; Neyshabur et al. 2018]
Empirically, large (normalized) margin (properly defined) positively correlates with generalization [Jiang et al. 2020].

* Lyu, L. 2020. ICLR 2020 oral.



Implicit Bias: Margin Maximization
« Consider the gradient flow

b0 ¢ _poro@)  foraet >0
dt I~

Clarke subdifferential

Smoothed normalized margin
(change min to softmin)

1

5(0) := p Llog =
Y(0) == p og

log — log (Z e q”)

I. Fora.e.t>tg, dj > 0;

2. Fora.e.t > tg, eu‘her Y > 0or 42 =0;

If U(-) is the exponential or logistic loss, then for t > t,

Theorem: Smooth normalized margin increases monotonically.

(&) = A ()] = 0.

L(t) =0 (t(logt;—Q/L) and p = O((logt)*/L).

Extension to certain non-homogeneuous NN by Chatterji, Long, Bartlett.




Implicit bias: Margin Maximization

Max-Margin Problem: (P) Classical SVM
: 1 9 o1 5
min o 16]15 Minimize §||w||
st. gn(0)>1  Vn€[N] subject to y;(wix; +b)>1 Vi

Theorem (Lyu, L. 2020., Ji, Telgarsky 2020.) The direction 6

converges and for the limit direction of 8, @/qmin(ﬁ)lﬂ iS
a KKT point of (P).

Definition A feasible point @ of (P) is a KKT point if there exist A1, ..., Ay > 0 such that

1. 0 — Zle Anhy, = 0 for some hy, ..., hy satistying h,, € 0°¢,(0);
2. Vn € [N]: \,(gn(0) — 1) = 0.

First order (necessary) condition for a local optimal solution in a constrained
optimization problem



Experiments

—— loss-based Ir, w/ bias loss-based Ir, w/o bias
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« Constant LR: Gradient very small, loss decreases very slowly
« We can increase the learning rate! (based on the loss)
« SGD with Loss-based Learning Rate.

« Training loss so small. modify Tensorflow to deal with numerical issues
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Robustness

model name | number of epochs  train loss  normalized margin

model-1 38 101004 5.65 x 1077
model-2 75 101512 9.50 x 1077
model-3 107 10—20-07 1.30 x 1074
The robust accuracy _ model-4 935 1012001 4.61 x 104
(the percentage of data with robustness = €) model-5 10000 10-88151 118 x 10~
—— model-1 —— model-2 —— model-3 —— model-4 model-5
100%] 100% =
= 98% 80%
©
= 06%/ 60%
>
o
S 94% 40%
o
o
G 99, 20%
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Hence, training longer is slightly useful in improving the robustness.



Margin and Robustness

It seems that we have solved the robustness problem (via margin
maximization)..But of course we haven’t!

wlix  wix =0
. o ® > . This picture may be
® e o ce ° "o misleading (especially in
e e o ee : -
o, ° o ° high dim)
Max-margin = robustness

—
4
™

The Dimpled Manifold Model of Adversarial Examples in Machine Learning
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Implicit Bias of GD
Double-edged sword of GD (Frel, Vardi, Bartlett, Srebro 24)

* Onone hand, GD leads to good standard accuracy
 On the other hand, the KKT properties (the implicit bias of

GD) force the network to find non-robust solution
But KKT properties are abstract and hold only for limiting case

« We perform a more intuitive, fine-grained, and finite time analysis of
GD process:

* A new form of implicit bias: Feature Averaging
* While there exist many discriminative features capable of

classifying data, GD tends to learn the average/combination of
these features

* One of major causes of nonrobustness

Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networ
Joint work with Binghui Li, Zhixuan Pan, Kaifeng Lyu



Theoretical Setup

1
Data distribution: o )o
Dpinary ON R% x {—1,1} that consists of k clusters o (%)
@
e positive and negative clusters are balanced o

* Asample (x,y) in Cluster i:
* x sampled from the Gaussian with mean p(i) € R% and covariance 021,
* yare labeled by {—1, 1} depending it is a positive or negative cluster

e u(i) foralli € [k] are orthogonal and ||u(i)|| = O0(v/d) (can be relaxed slightly) ® g e °n(2)

2-Layer Relu network:
* For simplicity, fix the second layer

1 1
' = — ReLU - bir) — — ReLLU s b_i.4
fo(x) = Z eLU({w1,r, ) + b1,+) - Z eLU((w_1,x) +b_1,+)

re[m)] re|[m]

| 1 n . | |
* Loss function (logistic loss):  £(8) := - Z( (yifo (Xi)) l(q) =log (1l +e 9)
=1

2 1 2 1

* Initialization: wg, ~ N(0,0,,1;) 0 = y bs.r ~ N(0,07) o) = 7z

e Gradient Descent (choose small LR): 6,,; =60, — nVL(6,)



Robust solution exists

* |t is easy to show a robust solution exists with robust radius 0(+/d)
* Let each neuron deal with one cluster

 Use the bias term b to filter out intra/inter cluster noise

If the input is a point in cluster 3, then
the 3 neuron will be activated, and
other neurons are not activated

w31 X u(3)
b=-=-2

Construction similar to that in [Vardi et al. 22] and [Frei et al. 24]




GD learns Average Features

Lemma: (Weight Decomposition) During training, we can decompose the weight w
as linear combination of the features (and some noise)

wEIB - ’U)E(),) + Z /\(Ir j“] ] Z )\([r J,'LJ W Z UE r) LEL

JIEIT} JET—- i€[N]
Theorem: (Feature Averaging) For sufficiently large d, suppose we train the model
using the gradient descent. After T = O(poly(d)) iterations, with high probability
over the sampled training dataset S, the weights of model fyry satisfy

l.  The model achieves perfect standard accuracy: P, ,)p,,.. [seu(for)(x) =y =1 —o(1)

Il. GD learns averaged features:

A\ ()
T 5.1,71 .. .
/\E I]JI — ( ) A(T}J =14 G(l),VE = {_]-: +1} re [ﬂ}*]h?:jlﬁjﬁ = «75

8,1,72

Large coeffs for
the same class

A =o(1),Vse {~1,+1},re[mlje T, Other coeffs are negligible

Large coeffs are almost the same




GD learns Average Features

The theorem resolves the conjecture proposed by Min and Vida, ICML 2024 (under
slightly different setting)

\/70- <“‘+a$> Koo <“‘ am>)a (3)

where|fi, = 1 St py, and i =T > k.11 Mk | Average features

Conjecture 1. Suppose that the intra-subclass variance
o > 0 is sufficiently small, that one has a training
dataset of sufficiently large size, and that we run gradi-
ent flow training on f,(x;0),0 = {w;j, 'Uj} _, of suffi-
ciently large width h for sufficiently long time T, start-
ing from random initialization of the weights with a suf-
ficiently small initialization scale. If p = 1, then we
have inf.-supgcsp-1 |cfp(x:0(T)) — F(x)] < 1;
If p € [3,p) for some p > 3, then we we have
inf o Supgesp—1 |cfp(x;0(T)) — FP)(z)| < 1.
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Average Features are Non-robust Features

Thm: For the weights in a feature-averaging solution, for any choice of bias b, the
model has nearly zero §—robust accuracy for any robust radius § = w(y/d/k)

(Recall that a robust solution exists with robust radius 0(+/d) )

Intuition: for average features, most same-class neurons will be activated, resulting a

much larger gradient norm (even though the margin y;f (x;) is similar to that in a
robust solution)

JE€ET+ JET-

wELZ = w.E.(,’.,). + Z /\(fzj.uj + Z A(fzj 1L + Z UE’ZLSL
.E[N]

large small




Robust and Nonrobust Solutions

More robust solution
One neural handle one individual class

GD tends to find such
decision boundary




Robust and Nonrobu:

More robust solution

One neural handle one individual class
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This‘, provides a theoretical analysis of the phenomena

GD tends to find such . ] _ : .. ;
decision boundary described in dimpled manifold hypothesis in our setting




Experiments

Each element in the matrix, located at position
(i, j) is the average cosine value of the angle
between the weight vector of ith neuron and
the feature vector y; of the j-th feature.
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Figure I: Illustration of Feature Averaging and Feature Decoupling .

We create a binary classification task from the CIFAR-10

dataset
MMNIST CIFAR-10
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Figure 2: Robustness Improvement on MNIST and CIFAR10 .
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Connection to Simplicity Bias

Simplicity Bias in Neural Networks (NNs)
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Figure 1: Simple vs. complex features

Shah et al. [2020]

The Pitfalls of Simplicity Bias in Neural Networks

Non-symmetric Data (with bias)

1 00000 RORREN
0 #ilill.llilll'-> black: max-margin
orange: linear
-1 4 000D ORRREON
2 -1 0 1 2

One can show GD on a 2-layer NN (with small init) finds a
linear classifier theoretically.

(A linear classifier only maximize the margin locally. Clearly it
Is not a global margin maximizer)

Lyu et al. Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias



Connection to Nonrobust Features

Robust features Non-robust features
Correlated with label ~ Correlated with label on average,
even with adversary but can be flipped within £, ball

ﬁ ﬁ ”yaS e’[ al_ Ad\/ersaria| Examp|es
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Individual cluster centers are robust features. But GD learns the avg of them,
which is a nonrobust feature



Connection to lower bound examples in [Li et al. 22]

[Li et al. 22] presented a binary classification example in which a simple linear classifier can achieve perfect
clean accuracy, but nearly zero robust accuracy, and a robust classifier exists (but with much larger VC-
dlmen5|on

Nonrobust mm m N N
-0~ 000

Li et al. Why robust generalization in deep learning is difficult: Perspective of expressive power.
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Final Remarks

Detalled feature-level supervisory label I1s useful
* We also show If one Is provided detalled feature level label, a similar 2-
layer NN can learn feature decoupled solutions (which i1s more robust)

* Human I1s more robust to small perturbations
* No adv training for human
* Adv training i1s slow (can we use std training to get a robust model?)
* More detailed and structured supervisory information for human
* Such labeling In large scale Is possible in the era of multi-model LLM



Thanks

Jian Li =g
lapordge@gmail.com

Wechat id: lapordge
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Robustness

 Robusthess

Rg(z) := ing{ {lle —'|| : (=, y) is misclassified}
x' e

* Robustness and normalized margin
« If gis B-Lipschitz, it is easy to see that (see e.g.,[Sokolic et al., 2017])

q6(2)
RQ(Z) > [j)

« So larger normalized margin perhaps implies better robustness
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