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Why DL and LLMs Work So Well?

« Tremendous success in practice
« Al models are still big black boxes
« Theory, several exciting recent results (still not so satisfying)
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Theory of Deep Learning & LLMs
Theory of DL

« Optimization (hew phenomena)
« Algorithm-dependent generalization
« Implicit bias (towards local/global min with interesting properties)
« Understanding useful tricks: Dropout, batchnorm, layernorm, initialization
« Theory of LLM
« Why predicting next token yields intelligence
« Understanding Pretraining, Fine-Tuning and In-Context Learning
« Understanding Scaling Law
« Hallucination and Interpretability
- Knowledge storage
« CoT, Reasoning
Traditional Optimization and Generalization theories do NOT work any more



Test Loss

caling Laws

* Kaplan Scaling Law (OpenAl)

N ap
Neer D,
L(N.D) = |( % + 5

ay ~ 0.076, N, ~ 8.8 x 1013 (non-embedding parameters)

ap ~ 0.095, D, ~ 5.4 x 1013 (tokens)
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L: the loss
N: model

size;

D: dataset size (the token number of training data).

* Chinchilla Scaling Laws (DeepMind)
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.



In Context Learning and Hallucination

 Hallucination

Who was the first person to walk on the moon?

Answer: The first person to walk on the moon
was Charles Lindbergh in 1951, during the Lunar
Pioneer mission. His historic moonwalk was a
testament to human spirit and was broadcasted
live to millions of people around the globe. x

Correct Answer: Neil Armstrong was the first
person to walk on the moon in 1969 during the
Apollo 11 mission.

(a) Factuality Hallucination

Generalization In the

N

Pre-Training

Please summarize the following news article:

Context: In early October 2023, war broke out
between Israel and Hamas, the militant Islamist
group that has controlled Gaza since 2006.
Hamas fighters fired rockets ... civilians and
taking dozens of hostages.

Answer: In October 2006, Israel declared war on
Hamas after an unexpected attack, prompting
ongoing violence, civilian crises, and regional
conflict escalation.

(b) Faithfulness Hallucination

* |n Context Learning

Input: 2014-06-01
Output: !e6!01!2014!
Input: 2007-12-13
Output: 112!1312007!
Input: 2010-09-23
Output: 109!2312010!
Input: 2005-07-23
Output: '67!231206605!

Pretraining-Finetuning framework
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Outline

« LLM Theory
* Fundamental Ideas from Shannon and Kolmogorov
« Compression and Prediction
» Kolmogorov’s theory
« Data Modeling (a nonparametric model)
 Hallucination and ICL
 Universal Predictor
« Research Directions



Pre-trained Foundation Models
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Emergence of Intelligence

gﬂzﬁ&ﬂﬂlﬁﬂ

8 billion parameters



Fundamental |deas from Shannon and Kolmogorov

Shannon, Prediction and Entropy of Printed English (1951)
* He introduced the idea of modeling language as a
stochastic process.
* Experiments to estimate language entropy
(perplexity).
* “Guessing games”
* Directly related to coding and compression

Kolmogorov Complexity (algorithmic information theory)
K(X):= The minimum length of TM that outputs X.
(a fine-grained structure: Kolmogorov structure function)

* Direct connection to compression

* Do not need to know the exact distribution (unlike Shannon’s information theory)

* Downside: incomputable:



@' Marcus Hutter
CO m p reSS I O n a n d | n te | | I g e n Ce Ilya Sutskever explains how Kolmogorov complexity well-defines

unsupervised learning and LLMs are approximations thereof. Nothing

"An Observation on Generalization“ by ||ya Sutskever new but very accessible, and maybe it makes it more convincing if it

comes from the Chief Scientist of OpenAl.

Very good talk (watch on youtube : https://www.youtube.com/watch?v=AKMuUA TVz3A)

View compression from Kolmogorov complexity theory
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K(X): Kolmogorov complexity of string X
The minimum length of TM that outputs X.

KX)<|C(X)|+K(C)+0(1)

Kolmogorov compressor as the ultimate compressor

Compression

- - - - t
Compression for reasoning about unsupervised learning rate

Say you have datasets X and Y Al models
You have a good compression algorithm C(data)
And say you compress X and Y jointly

What will a “sufficiently good compressor” do? AGI?
Kolmogoral

Use patterns that exist in X to help compress Y!

Model size

Why next-token prediction is enough for AGI - llya Sutskever (OpenAl Chief Scientist)  https//www.youtube.com/watch?v=YEUclZdj_Sc


https://sumanthrh.com/post/notes-on-generalization/
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* Fundamental Ideas from Shannon and Kolmogorov
« Compression and Prediction
» Kolmogorov’s theory
« Data Modeling (a nonparametric model)
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Prediction vs Compression

The training task of a pre-trained large language model (LLM) Is "next token
prediction,” so we can naturally view a pre-trained LLM as a next token predictor.

Given an unknown source distribution P, a predictor is defined as Q: X* —» AN which
given the prefix X<, as Input and outputs the conditional probability distribution
Q(xx |x<k).

Cross Entropy Loss

In practice, the objective we use to train our LLMs Is cross entropy defined as

L(M) = —log Prg(X1.p) = - Zlﬂg Pr(Xi) =Eyp, [~ log Prr(X)]

- 1 i), (i
= H(P(Ib”P_ﬂ,f) = _H Z Zlﬂg PM(.‘IIE ) | :Iig:?,:_l)?



Prediction vs Compression
Equivalence of Prediction and Compression

The better we can predict next token, the better we can
compress the sequence

We will show that if we can achieve a cross-entropy C (per token),
we can essentially compress the text using C+o(1) bits (per
token), and vice versa.



Equivalence of Prediction and Compression

Lossy Compression?

Machine Learning algorithms

DataSet Model Parameters

(Lossy Compressor)

Limitations: 1.Too much loss
2.No Guaranteed Generalization



Equivalence of Prediction and Compression

Lossless Compression

Machine Learning algorithms Model Parameters

Dataset {mmmm— | (OTPreON

lossless coding Data-to-model code

e.g. winzip (a compressor)

One can use LLM as a more powerful compressor



Equivalence of Prediction and Compression

Why lossless compression leads to intelligence

* |f the model can lossless compress well, it should
have learned real feature in the dataset and will
generalize well,

 Minimal Description Length (MDL)
The best Iinterpretation of a set of data Is a description of
that data that Is accurate and as short as possible.

* Occam'’s Razor :
Entities should not be multiplied unnecessarily.

Solomonoff's theory of inductive
inference(1964):

‘If a universe Is generated by an
algorithm, then observation of
that universe, encoded as a
dataset, are best predicted by the
smallest executable archive of that
dataset.”



Lossless Compression/coding

* Compressor encoder ¢: X* = {0,1}"
* There exists a decoder d: R(c) — X™ satisfies that d(c(X1.,)) = X1., .

The goal of lossless compression Is to minimize the average code length

Lc = Ex~p [Lc(x)]

where [, means the bit length of ¢(x).



Shannon sourcing Coding Theorem

Shannon'’s Source Coding Theorem
The Mathematical

Given some categorical distribution X, Shannon's Source Code Theorem tells us that no matter S Commmoricstion

what C you choose, the smallest possible expected code word length is the entropy of X. That is,

By CLAUDE E. SHANNON
end WARREN WEAVER

E[C(X)|]=) |C(X)|P(X =z) > - ) P(X =z)log P(X = z) = H(X)

zeX reX

More formally:

Theorem 1 (Shannon's Source Coding Thoerem): Given a categorical random variable X over

a finite source alphabet X and a code alphabet A, then for all uniquely decodable
C:X — A" itholds that E[|C(X)|] > H(X).

e

1949 full Eoo[edition

https://mbernste.github.io/posts/sourcecoding/



Using an Autoregressive Predictor to design a Lossless Compressor

Arithmetic Encoder:

Initially, this interval is Ip = [0, 1) .

When encoding xj, we first partition the previous interval Iy_1 = [lx—1, Ux—1) INtO
Nsub-intervals I (x1), I (x3),..., one for each letter from X = {x4,...,xy }. The

size of sub-interval I (y) that represents letter y is (Ug—1 — lx—1) - P(y | x < k).
Input (4 bytes)
A I X I

0.45 0.36 ) 0.36
P(X)=0.25 P(X|A)=0.2 1P(X|AIX)=0.2
b01 0.36 b010 |P(X]Al)=0.35 b0101 - 0.341
b1l 0.75
0.266 b0101010 P[II»’-\IKJ=D2
€.g., encodmg AlXI P(1)=0.3 L 0.25 | 0322
£.2 045 P(I|A)=0.6 03125 |
P(I|A1)=0.45
b001
b00 P(A]AIX)=0.6
b0 | p(a)=0.45 0.09 | 0u4a -
0.125 b0100 -
P(A]A)=0.2 P(A|AD=0.2 |
0 0 0 0 0.09 1 0.266
b0 b0? b010 b0101010

Output (7 bit)

The encoding length of arithmetic encoder is l.(xX1.,) = —[log,P(x1.,)] + 1



Prediction vs Compression

Equivalence of Prediction and Compression

The better we can predict next token, the better we can
compress the sequence

Shannon’s source coding theorem
Average Code length = entropy H(P)

Average Code length:
L(Q:) = IEXNR;, [F(L(X))] - EXNR;, [_ log QI(X))] - H(qul | Qc)-
Redundancy of code Q.: o
ivergence

REd(Qc: P) = L(Qc) - H(qu) = H(PQB || Qf:) - H(qu) — DKL(qu || Cu).:)*
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Kolmogorov Complexity

Kolmogorov Complexity (algorithmic information theory)
K(X):= The minimum length of TM that outputs X.
(a fine-grained structure: Kolmogorov structure function)

* Direct connection to compression

* |n some sense, the ultimate notion of compression

* Do not need to know the exact distribution (unlike Shannon'’s information
theory)

* Downside: incomputable:

Examples:

* abababababababababababababababa....
* 4clj5b2p0cv4wlx8rx2y39umgwbqg85s7...
e 31415926535897932384626433832795...

see the classic book “elements of Information Theory”



Kolmogorov Complexity

Can the following program output K(s)?

function KolmogorovComplexity(string s)
for 1 = 1 to infinity:
for each string p of length exactly i
if isValidProgram(p) and evaluate(p) == s
return i

Universality of Kolmogorov complexity

Theorem 14.2.1 (Universality of Kolmogorov complexity) If U is a
universal computer, for any other computer A there exists a constant c 4
such that

Ky(x) = Ka(x) +ca (14.3)

for all strings x € {0, 1}*, and the constant c 4 does not depend on x.



Kolmogorov Complexity

* Algorithmic randomness
* What is a random string? A impressible one.
* We say a seq x1...x, IS algorithmically random it

K(xixy...x,|n) > n.
* Most sequences are random (interesting sequences are rare)

Theorem 14.5.1 Let X, X», ..., X, be drawn according to a Bernoulli
( % ) process. Then

P(K(X1Xy...X,In) <n—k) <2* (14.44)

This can be easily seen from the fact that |{x € {0, 1} : K(x) < k}| < 2k,



Kolmogorov structure function

hx(a) = ming{log|S|: 53> X; K(S) <a,}

first touch sufficiency line
achieved by S

Slope = -1

Ve

sufficiency line

* Two part code (model-to-data code)
K(X)<|C(X)|+K(C)+0()
* Hence the set S* captures all the structure within x.

* The remaining description of x within S* is essentially the
description of the randomness within the string.

* Hence S* is called the Kolmogorov sufficient statistic for

k* K(x)
minimum sufficient statistics

FIGURE 14.4. Kolmogorov sufficient statistic.

K X.



Kolmogorov structure function

* Two part code (model-to-data code)

- K(X)<|C(X)|+K(C)+0(1)

]
1
IX| *1 Toest Loss

* C(losely related to Scaling Law

e fuf‘:‘ K(0) — K() + Dxw(4]l0)

* Distinguish structure & random noise
* afine-grained hierarchy

K(X)

H||0)
E,,, [log pg]

b Dyer, (0| €)

* Why a power law shape?

Irreducible Loss:
H(o)

Pure Randomness

was. * A characterization of “what should be

Model:00 Minimal

Sufficent | K0 = KO learnt” and “what is learnt first”

Statistic:g



Outline

« LLM Theory
* Fundamental Ideas from Shannon and Kolmogorov
« Compression and Prediction
» Kolmogorov’s theory
« Data Modeling (a nhonparametric model)
 Hallucination and ICL
 Universal Predictor
« Research Directions



Data Modeling — A Hierarchical Nonparametric Model

A Hierarchical Nonparametric Model:

* An encoder (syntax, most common knowledge, basic logic): can be captured by a fair
small-sized probabilistic TM that is fairly easy to learn (low sample complexity).

* World (factual) Knowledge: a large body of knowledge, that is constantly growing
(consider the number of facts, set of proteins, species, chemical substances etc.)

grammar]l = nltk.CFG. fromstring("""
. S —> HP WP
A syntax encoder: YP o> VEP | ¥ HP PP
_— . FF -> P HP
(prObabIIIStIC) ¥ -» "saw” | "ate” | “walked”
HP -> “John” | “Mary” | “Bob” | Det H | Det H PP
grammar Det —> "a” | "an” | “the” | “my”
H-> "man” | “dog” | "cat” | “telescope” | “park”
P->» "in" | “on” | “b¥" | “with”
T

Det Adj M v Det Adj Adj N P Det M
the | little | bear | saw | the | fine fat | trout in the | brook
Det Mom v Det MNom P NP
the bear SAW the trout in it

MNP v NP PP

He SAW it there

MNP VP PP

He ran thera

MP VP

He ran

//\_\
VP
A
Vv NP
| ] T
shot Det N PP
| | N
an elephant P NP

| N
in Det N

! l

my pajamas



Data Modeling — A Hierarchical Nonparametric Model

A Hierarchical Nonparametric Model:

* An encoder (syntax, most common knowledge, basic logic): can be captured by a fair
small-sized probabilistic TM that is fairly easy to learn (low sample complexity).

* World (factual) Knowledge: a large body of knowledge, that is constantly growing
(consider the number of facts, set of proteins, species, chemical substances etc.)

World (factual) Knowledge: i. m

« Can'’t be captured by a fixed LY
i
parametric model 05 ;r
* Modeled by Pitman-Yor Chinese }
2 | 3 2 a

Restaurant Process (PY-CRP)
8+ a &+ a &+ a 8+ ¢ 8 +a




Pitman-Yor Chinese Restaurant Process (PY-CRP)

* Preferential attachment 55 /k m ﬁ

QOO

N —
kf_fﬁj if joining an existing table &,
For the n-th customer: nﬁ oK )
«
, if starting a new table, —_—
n—1+4 8+ a 8+ o S_|_ 3+_ S—-F(,[

* leads to a power-law distribution

Lemma G.2 (Theorem 3.13 in Pitman (2006)). Let p = (p1,p2,...) ~ PYCRP(a,3) be the
sequence of miring weights drawn from a Pitman—Yor process. Then, the following limit almost
surely exists:

Sap = lim 1 Ve,

1—00



Test Loss

caling Laws

* Kaplan Scaling Law (OpenAl)

N ap
Neer D,
L(N.D) = |( % + 5

ay ~ 0.076, N, ~ 8.8 x 1013 (non-embedding parameters)

ap ~ 0.095, D, ~ 5.4 x 1013 (tokens)

Data Size Bottleneck Model Size Bottleneck

Data Size
e 2IM
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14B
22.0B
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108 107 108 109 107 108 10° 1010
Params (non-embed) Tokens in Dataset

Larger models require fewer samples The optimal model size grows smoothly

to reach the same performance with the loss target and compute budget

Line color indicates

Test Loss 10 number of parameters

> Compute-efficient

training stops far
short of convergence
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L: the loss
N: model

size;

D: dataset size (the token number of training data).

* Chinchilla Scaling Laws (DeepMind)
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.



A Coding Game

* Suppose Py Is a distribution indexed by 6.
* Bayesian setting: there Is a prior T over 6

* The player would like to model Pg using @
* Observe x1..xn one by one

* Minimize the following log-loss

1 1

mft [ 7(0)E,, ~p, |log df =int | =(6 Ep, |log df.
Q /(—) OBzrer [ ' Q(ffil:n))] Q /(:) ( ); o [ gQ(fI»‘z‘ \ffil:i—l))

minimize the bayesian code length
(cross-entropy)



A Coding Game

Bayesian Redundancy:

1 1
inf / m(0)Ey,. ~P [](Jg ——) —log ——— } do
Q Jo ( ) b ? Qn(:ﬂlzn)) Pg (:ﬂlzn))

= inf / 7(60) Dk (Py'||Q™)df = inf / w(#)Red(Q", Py')dé 2 inf Red, (Q, O)
Q Jo Q Jo Q
Connection of redundancy and mutual information
Lemma A.3. The minimum Bayesian redundancy is attained by the Bayesian mixture code @,

and is equal to the mutual information between random variable 8 (from the prior m over ©) and

the data x{.p,.
i%f Red,(Q,0) = i%f / 7(0)DkL(Py'||Q™)d = / w(0) Dk (P ||Q%)d0 = I(x1.;0).
JO 40

Here, 60 € © is sampled from the prior w, and x1., are sampled from Py .



Understanding Scaling Law

Under the Bayesian prediction framework, one can show that the minimum Bayesian redundancy is equal to the
mutual information (between the data and prior)

i%f Red,.(Q, ©) =i1éf/ m(60) Dk (Py'||Q")do = f w(ﬂ)DKL(Pg‘”HQﬁ)dH: I(x1.n;0).
© 8]
Theorem (informal): Under the above data generative model and unlimited model size, we can prove
that the Bayesian predictor (or Maximum Likelihood predictor in large data regime) has the following
IhC‘C‘

d knaw ﬂ.'idsyn
Nl-« N

‘_Y_’ | J \ Y )

Loss incurred by  Loss incurred by

learning the learning the syntax
knowledge (power law)  encoder

1
— H(X .n|P .
M N ) T N (X1.N|P data)

inf —Emumw Xiw~Py,,,, [F108 PM(Xin)] = O (

Irreducible loss
(pure randomness)

* Related to Heap’s Law (Heaps, 1978) an empirical relationshipstating that the vocabulary size grows sublinearly
with the size of a corpus N ,and Zipf’'s Law (Zipf, 2016).



Controlled experiments

Methodology popularized by Allen-Zhu and Li in a series of papers “Physics of LLMs” -1,2,3

PHILOSOPHIAE
NATURALIS
PRINCIPIA

MATHEMATICA.

lllllll

Ethological approach Controlled experiments
“LLM monkeys”

Physics

bioS dataset: we generate profiles for 400,000 individuals. Each profile contains six
attributes: date of birth, birth city, university, major, employer, and employer city
“Gracie Tessa Howell wasborn in Camden, NJ. He studied Biomedical Engineering and worked at

UnitedHealth Group. He entered the world on April 15, 2081, and is employed in Min-netonka. He is
an alumnus/alumna of Buena Vista College.”



Data Scaling Law
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higher frequency data learnt first




Model Scaling Law

Redundancy for the ith knowledge cluster:
Di(R) = o R [Eqw%.i [DKL (P b (A a) || Prry, (A q))”

Model scaling law (total redundancy) can be captured by the following
optimization problem

minimize ’D (*mr E ;D mt

subject to I(®g; M) < Cr} m; = I(¢;; M7,) > 0 for all i € N™

can be solved using KKT condition introduced in the last class



Model Scaling Law

Under the same data model, we have a theory of model scaling law (inspired by

Kolmogorov structure function)

2.0 4

1.5 1

Validation Loss
|
(=]

0.5

0.0

Loss Components
- 0-25%
- 25-50%
. 50-75%

75-100%

6.6 6.8 7.0

Model Parameters (legl0 scale)

Empirical results

7.6

Predicted Validation Loss

0.8 4

o
o
3

o
FS

0.2 1

0.0

The solution of the optimization problem

10¢ 104
Relative Model Capacity

minimize E;[D;(m;)] = Z piDi(m;),

=1

Components
- 0-25%
= 25-50%
mm 50-75%
75-100%

10°

subject to [(®o; Mg) < C, m; =(¢;; M) >0 foralli € N*



validation Loss - Epsilon (log scale)

Model Scaling Law

1.58

0.95

0.58 A

0.35

0.21 4

0.13 4

0.08

0.05 A

0.03 | =
. Power=1.35
0.02 | =——

0.01

Uniform
Fit: (x/x0)™-0.37 + 0.59
Power=1.20

Fit: (x/x0)"-0.48 + 0.63

Fit: (x/x0)™-0.57 + 0.64
Power=1.50

100K

316K 1.0M 3.2M 10.0M 31.6M
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For data generated from a uniform
distribution, the loss
curve significantly deviates from a power law

It may be advantageous to have power-law-
distributed data.

The model can gradually learn knowledge In
the order of frequency

More effective than the uniform case, where
no one element stands out and the model
lacks guidance on what to prioritize.



Understanding Instruction Fine-Tuning

Table 1. Examples of Pretrmning and Instruction Fine-Tumng Drala

* |nstruction fine-tuning:

Dataset Type Example
. Pretraining “Gracie Tessa Howell was
* Replace the encoder with another one (change the born in Camden, NJ. He stud-
ied Biomedical Engineerning
. d ked at UnitedHealth
way the knowledge is encoded) A

Ciroup. He entered the world
on April 15, 2081, and is em-
* The knowledge component stays the same ployed in Minnetonka. He is
an alumnus/alumna of Buena
Vista College™

We can show the loss for Instruction fine-tuning can be Instruction Fine-Tuning * Q: What arca of study did
bounded as (n' is the size of Instruction F-T data) on? A: Biomedical Engineer-
ing”
1 _ N+n)*—N* (1 | |
—Redynw = ]I(H'l:N-i—'rﬁ ‘i)knw) T I[(H'I:NE 'f.-'bknw) — ( ) (:) ()(Nu_l) Knowledgg 4 pr.etramed
n | n phase is retained
1 ~ . .
;REdiu = I(SN+1:N4n; Oins) = O(n1). Redundancy incurred by learning the

new encoder

Practical Implication: Instruction F-T is more useful for generation according to the instruction, but less
effective for injecting new knowledge



Hallucination and ICL

* Causes of hallucination on (factual knowledge)
* |nsufficient samples to learn the fact
* [nsufficient model size (related to model scaling law)
* Confusing/ambiguous prompt
* Conflicting knowledge In training data

* Other hallucinations (not covered, future work)

> Prompt: “Explain - "
> Answer: .

* Explaining In-Context Learning (Bayesian view)
* Consider P(next token | prompt)

* Prompt increase the posterior probability of

the relevant table A\ T a4p

/—\
/7 \
[ \
‘ 95 ] LR
\ /
N o g




Outline

« LLM Theory
* Fundamental Ideas from Shannon and Kolmogorov
« Compression and Prediction
» Kolmogorov’s theory
« Data Modeling (a nonparametric model)
 Hallucination and ICL
 Universal Predictor
« Research Directions



Universal Predictor: Solomonoff's theory

* Dartmouth Summer Research Conference on Artificial Intelligence, where
Solomonoft was one of the original 10 invitees

* A formal framework for universal inductive inference based on Kolmogorov
complexity and Bayesian inference

* A universal prior distr m(x) over all strings

m(z) = Z 2P

pll(p)=z+

* To predict future data, given a sequence x observed so far, and a prediction y (next
token), the conditional probability is the posterior

m(zy)
m(x)

m(y | ) =

* The Solomonoff predictor is universal m(z) = ¢, - p(x).



Universal Predictor: Solomonoff's theory

* Hypothesis: modern LLMs is a (rough) approximation of Solomonoff's
predictor.
* We can explain various behaviors of LLMs using this theory

* Drawbacks
* Unfortunately, Solomonoftf’'s predictor is again incomputable.

* Solomonoftf’'s predictor ignores the following important aspects
* the model size constraint
* Architecture constraints of transformer (can not represent certain function composition)
* Some (even simple) TMs are not efficiently learnable (XOR problem, one way functions etc.)

* We should refine Solomonoftf's theory to take account of the above
(computational and statistical) barriers



Research Questions (LLM theory)

* Theory on more general data generative model
(beyond syntax and factual knowledge models)
» Kolmogrov’s theory can be a good guideline
« Refined Universal Predictor (Solomonoff’s) Model
« Methodology: Physics of LLMs (controlled experiments)
 Scaling law, ICL, instruction following, emergence etc.
« Data <----> Skills
» Data importance
« High quality synthetic data (motivated from theory)
« Detecting Hallucination/Safety issues (from activation pattern
etc.)




Discussions

Compression vs AGl ?  (Sutskever's view)

$ AGI?
Kolmogor

Model size

llya Sutskever “an observation of generalization”



Discussions

Compression vs AGIl ? (Sutskever’s view)

Compression # AGI!!

ERIEE (XMRINETFE2E BRI )
Compression = Intelligence in inductive inference
FEAREDHIBE AL

ERTFFERESE ETRENEN)

llya Sutskever “an observation of generalization”

y AGI?
Kolmogor

Model size

Compression by itself cannot reflect exploration of physical world and

mathematical/logical reasoning, In my opinion



Discussions

rate

Al models

Compression vs AGI ?

$AGI?
Kolmogor

Model size

Compression = Intelligence in inductive inference llya Sutskever “an observation of generalization”
Compression by itself cannot reflect exploration of physical world and mathematical/logical reasoning

T s RN 8" R ZEinductive inferenceSEBE N EX 5. & B capture® fEfA E EMiX FRexploreIfiE
(F131e) MRELZEEEE,

BRI explore R BRI R A BN 11 FHcompressionfigid B3k, — NERAVULE. AT EdFHIpredict next
token, BFEF NIRRT LXILME, R/Gpredict next tokenFIEFHEHXE

SARREE 78R, MTEERXELHE, KAUANE, FTENREEFHNEREXELIE.

EAERN SIS A BEIEENERERE, EERHARNRERE, AnSGHAEREBEREAT . hEikllya
talk B F M EFEminimize perplexityZ| R T AGI,



Discussion: RL and Reasoning

XA S _EF s Breward is enough BB paperWi S EHR A,

HREFENERANEREZ LIRS E IR TR R A
EREBR TS Sreward, ERBBEERAEITAESER
MIFE B X reward, thatisall, A7 3%k Breward, =
explore, 3kf5 M datai@idcompress® Fci=4 7 intelligentfd
SFRAGIANIR, K5 Xintelligentfbehavior, AREBELF
R BER EHE

EbanF e math proofiXNE1E, FARINRETREM, FiR
KA Nproof B I R EI BB LA LK BEIARIOHE
H (Eba—1E 1000 & EE) |, BRXE m %
Flgreward, BEIAVEIE (Brewarddy) RcoverHHTR/)
Hproportion, X/ rewardZ BRI ARBFEHXR TH (X4
reward functionF#FMREEA—LEF XX, LLUE®R
FXH, thinEE, RENFEATEMI L RiEE,
T EFEAHIE  (von Neumann, Tao) .
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Reward is enough

--------

David Silver *, Satinder Singh, Doina Precup, Richard S. Sutton o
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Artificial intelligence
Artificial general intelligence
Reinforcement learning
Reward

In this article we hypothesise that intelligence, and its associated abilities, can be
understood as subserving the maximisation of reward. Accordingly, reward is enough to
drive behaviour that exhibits abilities studied in natural and artificial intelligence, including
knowledge, learning, perception, social intelligence, language, generalisation and imitation.
This is in contrast to the view that specialised problem formulations are needed for each
ability, based on other signals or objectives. Furthermore, we suggest that agents that learn
through trial and error experience to maximise reward could learn behaviour that exhibits
most if not all of these abilities, and therefore that powerful reinforcement learning agents

could constitute a solution to artificial general intelligence.
©r 2021 The Authors. Published by Elsevier BV, This is an open access article under the
CC BY-NC-ND license (http:|/creativecommons.org/licenses/by-nc-nd4.0/ L.

But do we really need RL?? RL vs SFT on smartly collected data



Theoretical AGI:
AlLXI(Artificial Intelligence exploration Institute)

« Environment Model: Assume the environment can be represented as a
probability distribution P(0¢44, 7:+1|as, hy) Where o, 4 1S the observation at
timet + 1, ;4 1S the reward at time t + 1, a; Is the action at time t, h; Is the
history up to time t.

 Prediction: ALXI uses the Solomonoff predictor to estimate future observations
and rewards.

 Decision making: AlXI selects the action that maximizes the expected
cumulative reward.

Marcus Hutter. “Universal Artificial Intellegence - Sequential Decisions Based on Algorithmic Probability.” Springer,2005.
http://hutterl.net/ai/suaibook.pdf
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