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Online Learning

 𝑡 = 1,2,… , 𝑇

Choose an action 𝑥𝑡
(without knowing 𝑓𝑡)

Observe the reward 𝑓𝑡(𝑥𝑡)
and the feedback (full 

information/semi-bandit/ 

bandit feedback)

the environment plays 𝑓𝑡



Online Learning

 Adversarial / Stochastic environment

 Feedback 

• full information (Expert Problem): know 𝑓𝑡
• semi-bandit (only makes sense in combinatorial setting )

• bandit feedback: only knows the value 𝑓𝑡(𝑥𝑡)
• Exploration-Exploitation Tradeoff



The Expert Problem

time 1 2 3 4 … T

Expert 1 T T H T … T

Expert 2 H T T H … H

Expert 3 T T T T … T

….

A special case – coin guessing game

Imagine the adversary chooses a sequence beforehand (oblivious adversary):

TTHHTTHTH……

If the prediction is wrong, cost = 1 for the time slot. Otherwise, cost = -1.

Suppose there is an expert who is really good (who can predict 90% correctly). Can you do 

(almost) at least this good?



No Regret Algorithms
 Define regret:

 We say an algorithm is “no regret” if 𝑅𝑇 = 𝑜(𝑇) (e.g., 𝑛)

 Hedge Algorithm (aka mulplicative weighting) [Freund & 
Schapire ‘97] can achieve a regret of O( 𝑛)
 Deep connection to Adaboost



Universal Portfolio
[Cover 91]

 n stocks

 In each day, the price of each stock will go up or down

 In each day, we need to allocate our wealth between those 
stocks (without knowing their actually prices on that day) 

 We can achieve almost the same asymptotic exponential 
growth rate of wealth as the best constant rebalanced 
portfolio chosen in hindsight (i.e., no regret!), using a 
continuous version of the multiplicative weight algorithm

 (CRP is no worse than investing the single best stock) 



Online Learning

A very active research area in machine learning

 Solving certain classes of convex programs 

 Connections to stochastic approximation (SGD: 
stochastic gradient descent) [Leon Bottou]

 Connections to Boosting: Combining weak learners into 
strong ones [Freund & Schapire]

 Connections to Differential Privacy: idea of adding 
noise/ regularization / multiplicative weight

 Playing repeated games

 Reinforcement learning (connection to Q-learning, 
Monte-Carlo tree search)
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Exploration-Exploitation Trade-off

 Decision making with limited information

An “algorithm” that we use everyday

 Initially, nothing/little is known 

 Explore (to gain a better understanding)

 Exploit (make your decision)

 Balance between exploration and exploitation

 We would like to explore widely so that we do not miss really good choices

 We do not want to waste too much resource exploring bad choices (or try to 

identify good choices as quickly as possible)



The Stochastic Multi-armed Bandit

 Stochastic Multi-armed Bandit

 Set of 𝑛 arms

 Each arm is associated with an unknown reward distribution 

supported on [0,1] with mean 𝜃𝑖
 Each time, sample an arm and receive the

reward independently drawn from the 

reward distribution 

classic problems in stochastic control, stochastic 

optimization and online learning



Stochastic Multi-armed Bandit

 Statistics，medical trials (Bechhofer, 54) ,Optimal control，
Industrial engineering (Koenig & Law, 85), evolutionary 
computing (Schmidt, 06), Simulation optimization (Chen, Fu, 
Shi 08),Online learning (Bubeck Cesa-Bianchi,12)

 [Bechhofer, 58] [Farrell, 64] [Paulson, 64] [Bechhofer, Kiefer, 
and Sobel, 68],…., [Even-Dar, Mannor, Mansour, 02] 
[Mannor, Tsitsiklis, 04] [Even-Dar, Mannor, Mansour, 06] 
[Kalyanakrishnan, Stone 10] [Gabillon, Ghavamzadeh, 
Lazaric, Bubeck, 11] [Kalyanakrishnan, Tewari, Auer, Stone, 
12] [Bubeck, Wang, Viswanatha, 12]….[Karnin, Koren, and 
Somekh, 13] [Chen, Lin, King, Lyu, Chen, 14]

 Books:  

 Multi-armed Bandit Allocation Indices, John Gittins, Kevin 
Glazebrook, Richard Weber, 2011

 Regret analysis of stochastic and nonstochastic multi-armed bandit 
problems S. Bubeck and N. Cesa-Bianchi., 2012

 ……



The Stochastic Multi-armed Bandit

 Stochastic Multi-armed Bandit (MAB)

MAB  has MANY variations!

 Goal 1: Minimizing Cumulative Regret (Maximizing Cumulative 

Reward)

 Goal 2: (Pure Exploration) Identify the (approx) best K arms (arms 

with largest means) using as few samples as possible (Top-K Arm 

identification problem)

 K=1 (best-arm identification)



A Quick Recap

 The Expert problem

 Feedback: full information

 Costs: Adversarial 

 Stochastic Multi-armed bandits

 Feedback: bandit information (you only observe what you play)

 Costs: Stochastic



Upper Confidence Bound

 n stochastic arms (with unknown distributions)

 In each time slot, we can pull an arm (and get an i.i.d. reward 

from the reward distribution)

 Goal: maximize the cumulative reward/minimize the regret

𝑇𝑖 𝑡 : how many times we have played arm i up to time t



Upper Confidence Bound

 UCB Regret bound (Auer, Cesa-Bianchi, Fischer 02)

 UCB has numerous extensions: KL-UCB, LUCB, CUCB, 

CLUCB, Lil-UCB, …..

𝐺𝑎𝑝: Δ𝑖 = 𝜇1 − 𝜇𝑖

𝑅𝑇 =

𝑖=2

𝑛
log 𝑛

Δ𝑖
+ (1 +

𝜋2

3
)(

𝑖=2

𝑛

Δ𝑖)
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Combinatorial Bandit - SDUCB
 Stochastic Multi-armed Bandit

 Set of 𝑛 arms

 Each arm is associated with an unknown reward distribution 
supported on [0, s]

 Each time, we can play a combinatorial set S of arms and receive 
the reward of the set (e.g., 𝑟𝑒𝑤𝑎𝑟𝑑 = max

𝑖∈𝑆
𝑋𝑖 )

 Goal: minimize the regret

 Application: Online Auction

 Each arm: a user type – the distribution of the valuation

 Each time we choose k of them

 The reward is the max valuation 

[Chen, Hu, L, Li, Liu, Lu, NIPS16]



Combinatorial Bandit - SDCB

 Stochastic Dominate Confidence Bound

 High level idea: For each arm, maintain an estimate 

CDF which stochastically dominates the true CDF

 In each iteration, solve the offline optimization 

problem using the estimate CDF as the input (e.g., find 

S which maximizes E[max
𝑖∈𝑆

𝑋𝑖]) 



Combinatorial Bandit - SDCB

 Results: Gap-dependent 𝑂(ln𝑇) regret

 Gap-independent regret
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Best Arm Identification
 Best-arm Identification: Find the best arm out of n arms, 

with means 𝜇[1], 𝜇[𝑛],.., 𝜇[𝑛]
 Goal: use as few samples as possible

 Formulated by Bechhofer in 1954

 Generalization: find out the top-k arms

 Applications: medical trails, A/B test, crowdsourcing, team 
formation, many extensions….

 Close connections to regret minimization



 Regret Minimization

 Maximizing the cumulative reward



 Best/top-k arm identification

 Find out the best arm using as few samples as possible

Your boss: 

I want to go to casino tomorrow.

find me the best machine!



Applications

 Clinical Trails

 One arm – One treatment

 One pull – One experiment

Don Berry, University of Texas 

MD Anderson Cancer Center



Applications
 Crowdsourcing:

 Workers are noisy 

 How to identify reliable workers and exclude unreliable workers ? 

 Test workers by golden tasks  (i.e., tasks with known answers)

 Each test costs money. How to identify the best 𝐾 workers with minimum amount of 

money? 
Top-𝑲Arm Identification 

Worker Bernoulli arm with mean 𝜃𝑖
(𝜃𝑖: 𝑖-th worker’s reliability)

Test with golden task Obtain a binary-valued sample 

(correct/wrong)

0.95 0.99 0.5



Naïve Solution

 𝜖-approximation: the ith arm in our output is at most 𝜖 worse 

than the the ith largest arm

 Uniform Sampling

Sample each coin M times

Pick the K coins with the largest empirical means

empirical mean:  #heads/M

How large M needs to be (in order to achieve 𝜖-approximation)??

So the total number of samples is O(nlogn)
𝑀 = 𝑂(log 𝑛)



Naïve Solution

Uniform Sampling

 With M=O(logn), we can get an estimate 𝜃𝑖
′ for 𝜃𝑖 such that 

𝜃𝑖 − 𝜃𝑖
′ ≤ 𝜖 with very high probability (say 1 −

1

𝑛2
)

 This can be proved easily using Chernoff Bound (Concentration 

bound). 

 Then, by union bound, we have accurate estimates for all arms

What if we use M=O(1)?  (let us say M=10)

 E.g., consider the following example (K=1):

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5)

 Consider a coin with mean 0.5,

Pr[All samples from this coin are head]=(1/2)^10

 With const prob,  there are more than 500 coins whose samples are all heads



Can we do better??
 Consider the following example:

 0.9, 0.5, 0.5, …………………., 0.5  (a million coins with mean 0.5)

 Uniform sampling spends too many samples on bad coins.

 Should spend more samples on good coins 

 However, we do not know which one is good and which is bad……

 Sample each coin M=O(1) times.

 If the empirical mean of a coin is large, we DO NOT know whether it 

is good or bad

 But if the empirical mean of a coin is very small, we DO know it is bad 

(with high probability)



Median/Quantile-Elimination

For i=1,2,….

Sample each arm 𝑀𝑖 times

Eliminate one quarter arms

Until less 4k arms

𝑀𝑖 ∶ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑒𝑥𝑝𝑜𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦

When n ≤ 4𝑘，use uniform sampling

Decrease 𝜖，until proper termination condition

We can find a solution with additive error  𝜖



Our algorithm



(worst case) Optimal bounds

Top-1 arm (PAC) [Even-Dar et al. 02]

We solve the average (additive) version in [Zhou, Chen, L ICML’14]

We extend the result to both (multiplicative) elementwise and average in [Cao, L, Tao, Li, NIPS’15] 
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A More General Problem

Combinatorial Pure Exploration

 A general combinatorial constraint on the feasible set of arms

 Best-k-arm: the uniform matroid constraint 

 First studied by [Chen et al. NIPS14]

 E.g., we want to build a MST. But each time

get a noisy estimate of the true cost of each edge

 We obtain improved bounds for general matroid constaints

 Our bounds even improve previous results on Best-k-arm

[Chen, Gupta, L. COLT’16]



Application

 A set of jobs

 A set of workers

 Each worker can only do one job

 Each job has a reward distribution

 Goal: choose the set of jobs with the 

largest total expected reward

Jobs Workers

Feasible sets of jobs that can be 

completed form a transversal matroid



Our Results

 A generalized definition of gap

 Exact identification

 [Chen et al.] 

 Previous best-k-arm [Kalyanakrishnan]:

 Ours:

 Our result is even better than previous best-k-arm result

 Our result matches Karnin’et al. result for best-1-arm



Our Results

 PAC: Strong eps-optimality (stronger than elementwise opt)

 Ours:

 Generalizes [Cao et al.][Kalyanakrishnan et al.]

 Optimal: Matching the LB in [Kalyanakrishnan et al.]

 PAC: Average eps-optimality

 Ours:                                      (under mild condition)

 Generalizes [Zhou et al.]

 Optimal (under mild condition): matching the lower bound in

[Zhou et al.]



Our technique

 What is more interesting is our technique

 Sampling-and-Pruning technique

 Originally developed by Karger, and used by Karger, Klein, Tarjan for the 

expected linear time MST

 High level idea (for MST)

 Sample a subset of edges (uniformly and random, w.p. 1/100)

 Find the MST T over the sampled edges

 Use T to prune a lot of edges (w.h.p. we can prune a constant 

fraction of edges)

 Iterate over the remaining edges
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Best Arm Identification

 Some classical results:

 Mannor-Tsitsiklis lower bound:

It is an instance-wise lower bound

 A PAC algorithm – Median Elimination [Even-Dar et al.]

 Find an 𝜖-optimal arm using 𝜖−2𝑛 log 𝛿−1 samples

 The bound is worst-case optimal 



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
Jamieson et al.: “The procedure cannot be improved in the sense that the number of samples required 

to identify the best arm is within a constant factor of a lower bound based on the law of the iterated 

logarithm (LIL)”. 



Are we done? – a misclaim

Mannor-Tsitsiklis lower bound:

Farrell’s lower bound (2 arms):

Attempting to believe : Karnin’s upper bound is tight 
• Of course, to completely close the problem, we need to show the 

remaining generalization from Farrell’s LB to n arms:  ∑Δ[𝑖]
−2loglogΔ[𝑖]

−1



New Upper and Lower Bounds

 Our new upper bound (strictly better than Karnin’s)

Farrell’s LB M-T LB lnlnn term seems strange……..

[Chen, Li. ArXiv 15]



New Upper and Lower Bounds

 Our new upper bound (strictly better than Karnin’s)

 It turns out the lnlnn term is fundamental.

 Our new lower bound (not instance-wise)

Farrell’s LB M-T LB lnlnn term seems strange……..



Open Question

 (almost) Instance optimal algorithm for best arm

 Gap Entropy:

 Gap Entropy Conjecture:

 An instance-wise lower bound 

 An algorithm with sample complexity:

𝑒−1 𝑒−2 𝑒−3 𝑒−4 𝑒−5 𝑒−6 𝑒−7Δ

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7



Thanks.
lapordge@gmail.com
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