Tsinghua University

Learning and Prediction over Massive Spatio－temporal Data

Jian Li
Institute for Interdisciplinary Information Sciences
Tsinghua University，China

CONTENTS

1．Introduction
2 Challenges
3 supply－demand prediction
4 Travel time estimation
5 Store Location
6 Visitation Prediction

Tsinghua University

\square Spatial Temporal data

■ GPS data，trajectory
■ Online car－hiring data

\square Spatial Temporal data

■ Warehouse management
－Online retailers

Amount of Sales per Channel and Country（last year）

Tsinghua University

■ Spatial Temporal data

－Social relationship detection

Financial data

－Stock price prediction

\square Characteristic

■ Spatial dependence
■ different locations interact on each other
－compare with images：
－city level scale，sensitive to the granularity
－Temporal dependence
－past states affect the future
－compare with texts／speech：
－seasonality in multi－granularity
－highly affected by sudden event（raining， traffic accident）

\square Characteristic

－Diverse data sources

－GPS locations，orders，weather，POIs，etc．
－Massive，large volume，highly noisy

Tsinghua University

\square Some Recent work of My Group

- Supply-demand Prediction
- Online Car-hiring Services

■ When will you arrive?

- Estimating Travel Time Based on Recurrent Neural Networks
- Where to build your store?
- Store location selection

- User Identification
- Automatic User Identification across Heterogeneous Data Sources
- Visitation Prediction
- Which POI you will visit next?
- Traffic condition Prediction
- Traffic Condition Prediction System

CONTENTS

1 Introduction
2 Challenges
3 supply－demand prediction
4 Travel time estimation
5 Store Location
6 Visitation Prediction

Tsinghua University

\square Supply-Demand Prediction for Online Carhiring Services using Deep Neural Network

- Objective
- Predict the gap between the car-hailing supply and demand in a certain area in the next few minutes.
- Motivation
- Balance the supply-demand by
 scheduling the drivers in advance
- Adjust the price dynamically
- Recommend popular pick-up locations for drivers

■ Challenges

－The car－hailing supply－demand varies dynamically
－geographic locations
－time intervals．
－The order data contains multiple attributes
－＂hand－crafted＂features are difficult to design

Tsinghua University

\square Definitions

Car－hailing order
valid（invalid）
1．Date
4．Star area ID
2．Timeslot
5．Destination area ID

Objective

Predict the supply－demand gap（eg． the number of invalid orders）of a certain area a，in 10 minutes from now．

Tsinghua University

■ Framework

1. End-to-end model

2. Using embedding to "cluster" similar areas and timeslots
3. Learning the useful feature vector from the order data
4. Involve in the weather and traffic data through residual network

■ Identity Block

－Different areas at different time can share similar supply－ demand patterns．
－Prior work clusters the similar data ：
－separate sub－task
－manually design the distance measure

Identity Block

\square Order Part

■ Order Part

1. Project vectors into the same kernel space
2. Directly manipulate the vectors in the space
3. Stable training procedure \& accurate result

Output of the supply-demand block

ti 2L ti L 田 t+L

Tsinghua University

■ Experiment－Effects of Embedding

\square Experiment - Effects of Embedding

Area 1

Area 26

\square Environment Part

■ Weather Block
－Residual Connection
－Take the output as the＂residual＇
－Makes the model more flexible

\square Experiment

Table: Performance Comparison

Model	Error Metrics	
	MAE	RMSE
Average	14.58	52.94
LASSO	3.82	16.29
GBDT	3.72	15.88
RF	3.92	17.18
Basic DeepSD	3.56	15.57
Advanced DeepSD	$\mathbf{3 . 3 0}$	$\mathbf{1 3 . 9 9}$

Tsinghua University

■ Experiment

CONTENTS

1 Introduction
2 Challenges
3 supply－demand prediction
4 Travel time estimation
5 Store Location
6 Visitation Prediction

Tsinghua University

\square Estimating Travel Time Based on Recurrent Neural Networks

When will you arrive？

Motivation

－Routes planning，Navigation
－Traffic dispatching
Previous work
－Estimate for each individual road
－Road intersections and traffic lights
－No driving habits

Tsinghua University

■ Definitions

Objective

Given：
1．path，2．driver，3．start time Estimate：
the travel time for the given path．
＊We assume that the travel path S is specified by the user or generated by the route planning apps．

■ Challenges

－The travel time of a specific path can be very different
\checkmark Peak／Non－peak hour
\checkmark The day of the week

－Diverse values of trajectory length／distance．
－Different driving habits

话羊大奚

Architecture

1．Incorporate various factors
2．Using LSTM to capture the temporal relationships
3．Using ResNet to predict the travel time

4．Extend to multi－task learning by introducing an auxiliary component

■ Sequence Learning Component

Sequence Learning Component

－Using LSTM to capture temporal dependency
－Handling different trajectory length
－Mean Pooling Trick
－Sampling Trick

$$
\left(\ln g_{i}, l a t_{i}, \ln g_{i+1}, l a t_{i+1}, d i s\right)
$$

\square Residual Component

- Concatenate the output of the sequence learning component and the attribute component.
- Connect three fully-connected layers by residual connnection
Residual Component

Tsinghua University

- Auxiliary Component

Auxiliary Component

To utilize the "local information"

- extend to a multi-task model
- estimate the travel time of GPS point
 pairs
- used as the auxiliary output

■ Model Training

- Evaluate: mean absolute percentage error (MAPE)
- Residual Component

$$
\operatorname{loss}_{\text {seq }}=\left|e-\Delta t_{p_{1} \rightarrow p_{L_{m}}}\right| / \Delta t_{p_{1} \rightarrow p_{L_{m}}} .
$$

- Auxiliary Component

$$
\operatorname{los} s_{a u x}=\frac{1}{m-1} \sum_{i=1}^{m-1} \frac{\left|e_{i}-\Delta t_{p_{L_{i}} \rightarrow p_{L_{i+1}}}\right|}{\Delta t_{p_{L_{i}} \rightarrow p_{L_{i+1}}}+\epsilon} .
$$

- Final loss:

$$
\operatorname{loss}=\operatorname{loss}_{s e q}+\alpha \cdot \operatorname{loss}_{a u x}
$$

话羊大学
Tsinghua University

\square Experiment

Data Description

－ 1.4 billion GPS records of 14，864 taxis in Oct． 2014 in Chengdu．
－Total number of trajectories：9，653，822．（60GB）
－Use the last 7 days（from 24th to 30th）as the test set and the remaining ones as the training set．

Spark
TensorFlow

\square Experiment

Table：Performance Comparison

Model	MAPE
Gradient Boosting	20.32%
MLP－3 layers	16.17%
MLP－5 layers	15.75%
Vanilla RNN	18.85%
DeepTTE	13.14%

CONTENTS

1 Introduction
2 Challenges
3 supply－demand prediction
4 Travel time estimation
5 Store Location
6 Visitation Prediction

- Store Site Selection

Where to open a new store (optimal facility location problem)? demand prediction existing competition crowd profile (we are planning to use Topic models)

A store: a word
A sequence of stores a user visited: a sentence location selection (a geometric optimization problem)

Store Site Selection

\square Introduction

Joint work with Baidu Big Data lab

Store Site Selection

\square
Existing work
－Previous work
－Make decision in given locations．
－Check－in data
－Linear supervised learning model．
－Our work
－Demand based
－Mining features and target from multiple spatial－temporal data sources

Store Site Selection

\square User Demand Analysis

Specific（＇Starbucks＇）

Q 共找到＂starbucks＂相关 239 个结果

General（＇Coffee shops’）
－［u，2015－08－08，（116．34，40．02）， 08：42：28，＂Starbucks＂］
－User demand：D＝（lat，Ing，t）
－Two types of demands

Q 共找到＂coffee＂相关73个结果

Store Site Selection

Finding Demand Centers

- Identify demand points
- Exclude supplies
- Specific demands
- General demands
- Clustering demands

Store Site Selection

Exclude supplies：General

Exclude supplies with some probabilities
Distance score $S_{d}=1-e^{\left.-d(l u-d)^{2} / \sigma^{2}\right)}$
Supply Score $\mathrm{S}_{\mathrm{s}}=\mathrm{e}^{-\varepsilon N}$
Remaining score $S_{r}=\alpha S_{d}+(1-\alpha) S_{s}$

Store Site Selection

Real Cases

chain hotpot restaurant＂HaiDiLao＂opened at September， 2015
＂Starbucks＂opened at January， 2016

CONTENTS

1 Introduction
2 Challenges
3 supply－demand prediction
4 Travel time estimation
5 Store Location
6 Visitation Prediction

Inferring POI Visitation

\square Introduction

Given a user，the location and the corresponding timestamp，we want to figure out the actual POI that she or he most likely has visited．

\checkmark Understanding the characteristics of users．
\checkmark Useful for recommendation systems，advertisements，check－in systems．

Inferring POI Visitation

\square Limitation of Existing work
－Distance based neighborhood models：
－Supervised learning－to－rank algorithms

Inferring POI Visitation

－Three steps：
\checkmark Bayesian inference．
\checkmark LSTM－based inference．
\checkmark Model fusion．

Inferring POI Visitation

Bayesian Inference

$$
\begin{gathered}
\mathrm{P}\left(\mathrm{l}_{\mathrm{u}} \mid \text { poi }=\mathrm{p}\right)=\sum_{\mu_{\mathrm{k}}} \mathrm{w}_{\mathrm{p}}\left(\mu_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{l}_{\mathrm{u}} \mid \mu_{\mathrm{k}}\right) \\
\mathrm{P}\left(\mathrm{l}_{\mathrm{u}} \mid \mu_{\mathrm{k}}\right)=\mathrm{N}\left(\mathrm{l}_{\mathrm{u}} \mid \mathrm{l}_{\mu_{\mathrm{k}^{\prime}}} \sigma^{2}\right)
\end{gathered}
$$

$$
\mathrm{w}_{\mathrm{p}}\left(\mu_{\mathrm{k}}\right)=\frac{1 / \mathrm{d}\left(\mu_{\mathrm{k}}, \mathrm{p}\right)+1}{\sum_{\mathrm{j}}^{1} / \mathrm{d}\left(\mu_{\mathrm{j}}, \mathrm{p}\right)+1}
$$

$$
\mathrm{P}(\mathrm{t} \mid \mathrm{p})=\mathrm{P}(\text { hour } \mid \mathrm{p}) \mathrm{P}(\text { week } \mid \mathrm{p})
$$

$$
\mathrm{P}(\mathrm{p}) \propto \mathrm{P}\left(\text { wifi }_{\mathrm{p}}\right) * \mathrm{P}\left(\text { query }_{\mathrm{p}}\right)
$$

Inferring POI Visitation

LSTM－based model

$$
\mathrm{S}_{\mathrm{p}_{\mathrm{i}}}\left(\mathrm{hs}_{\mathrm{c}}, \mathrm{l}_{\mathrm{c},}, \mathrm{t}_{\mathrm{c}}\right)=\mathrm{P}\left(\text { poi }=\mathrm{p}_{\mathrm{i}} \mathrm{l}_{\mathrm{c}}, \mathrm{t}_{\mathrm{c}}\right) * \mathrm{~h}_{\mathrm{c}}
$$

\square Experiments

- Data1: used to generate the POI features for Bayesian model Map query data, GPS data, and WiFi data from Jun. 2015 to Dec. 2015.
- Data2: groudtruth

Check-in data of Nuomi in China from Jan. 1st, 2016 to Mar. 31th, 2016

- 23 categories in POIs of Nuomi.

Accuracy for predicting POI's category with the LSTM based model is about
0.40 .

Inferring POI Visitation

Experiments

- The check-in data is very sparse, hard to extract sequential information from RNN by only using the check-in data.
- However, in our framework IPVBR, we use historical stay points as the input to avoid such problem.

Time duration	Average number of check-ins for users
3 months	2.7
6 months	9.1
12 months	21.4

Inferring POI Visitation

Experiments

Tsinghua University

\square Other work: Automatic User Identification across Heterogeneous Data Sources

Goal: Identify the same user from the historical trajectory data set.

Motivation: human mobility, data integration, improve data quality

Same person, different
sampling rates
Challenges:

- Very different sampling rates
- Information loss in sparse trajectories
- Temporally disjoint
- Distinguish the overlaps

School mates, signifi-

Same person, sparse rate, occurred in several

话羊大学
Tsinghua University

\square Other work：Traffic Condition Prediction

Relationships observation

（a）All models（standard）

（d）STPGM（standard）
（b）All models（sparse）
（c）PR－Tree（standard）

－PR－Tree models the traffic condition time series of each individual roads

0.7
0.6

－STPGM models the relationship between different roads
－Our best quality prediction is achieved by a careful ensemble of the two models．

Other work：Destination Prediction

\square Problem Definition
Destination prediction is to predict the destination of a trip given a partial passed trajectory．

Thank you

