Learning Arbitrary Statistical Mixtures of Discrete Distributions

Jian Li（Tsinghua），Yuval Rabani（HUJI），
Leonard J．Schulman（Caltech），Chaitanya Swamy（Waterloo）

- Problem Definition
- Related Work
- Our Results
- The Coin Problem
- Higher Dimension
- Conclusion

Problem Definition

- $\Delta_{n}=\left\{x \in R_{+}^{n} \mid\|x\|_{1}=1\right\}$
- So each point in Δ_{n} is a prob. distr. over [n]
- ϑ is a prob. distr. over Δ_{n} (unknown to us)
- Goal: learn ϑ (i.e., transportation distance in L_{1} at most ϵ. $\left.\operatorname{Tran}_{1}(\vartheta, \hat{\vartheta}) \leq \epsilon\right)$

Problem Definition

- $\Delta_{n}=\left\{x \in R_{+}^{n} \mid\|x\|_{1}=1\right\}$
- So each point in Δ_{n} is a prob. distr. over [n]
- ϑ is a prob. distr. over Δ_{n} (unknown to us)
- Goal: learn ϑ (i.e., transportation distance in L_{1} at most ϵ. $\left.\operatorname{Tran}_{1}(\vartheta, \hat{\vartheta}) \leq \epsilon\right)$
- A \boldsymbol{k}-snapshot sample: (k : snapshot\#)
- Take a sample point $x \sim \vartheta \quad\left(x \in \Delta_{n}\right)$ (we don't get to observe x directly)
- Take k i.i.d. samples $s_{1} s_{2} \ldots s_{k}$ from X (we observe $s_{1} S_{2} \ldots s_{k}$, called a k-snapshot sample)

- Question:

How large the snapshot\# \boldsymbol{k} needs to be in order to learn $\boldsymbol{\vartheta}$??
How many \boldsymbol{k}-snapshot samples do we need to learn $\boldsymbol{\vartheta}$??

- Problem Definition
- Related Work
- Our Results
- The Coin Problem
- Higher Dimension
- Conclusion

Related Work

- Previous work
- Mixture of Gaussians: a large body of work
- Only need 1-snapshot samples
- k-snapshot $(k>1)$ is necessary for mixtures of discrete distributions
- Learn the parameters
- Topic Models
- ϑ is a mixture of topics (each topic is a distribution of words)

How a document is generated:

- Sample a topic from $x \sim \vartheta \quad\left(x \in \Delta_{n}\right)$
- Use X to generate a document of size k (a document is a k snapshot sample)

Related Work

- Previous work
- Mixture of Gaussians: a large body of work
- Only need 1 -snapshot samples
- k -snapshot $(\mathrm{k}>1)$ is necessary for mixtures of discrete distribution
- Topic Models
- Various assumptions:
- LSI, Separability [Papadimitriou,Raghavan,Tamaki,Vempala’00]
- LDA [Blei, Ng, Jordan'03]
- Anchor words [Arora,Ge,Moitra'12] (snapshot\#=2)
- Topic linear independent [Anandkumar, Foster, Hsu, Kakade, Liu' 12] (snapshot\#=O(1))
- Several others
- Collaborative Filtering
- L1 condition number [Kleinberg, Sandler '08]
- Problem Definition
- Related Work
- Our Results
- The Coin Problem
- Higher Dimension
- Conclusion

Transportation Distance

- Also known as earth mover distance, Rubinstein distance, Wasserstein distance
- Tran (P, Q) : Distance between two probability distributions P, Q
If we want to turn P to Q , the metric is the cost of the optimal transportation T (i.e., $\int\|x-T(x)\| d P$)
E.g., in discrete case, it is the solution of the following LP:

$$
\begin{array}{r}
\text { minimize } \sum_{i, j} d\left(v_{i}, v_{j}\right) x_{i j} \text { subject to } \sum_{j} x_{i j}=P\left(\left\{v_{i}\right\}\right), \forall i \in[n], \\
\sum_{i} x_{i j}=Q\left(\left\{v_{j}\right\}\right), \forall i \in[n], \\
x_{i j} \in[0,1] \forall i \in[n], j \in[n] .
\end{array}
$$

Transportation Distance

- Also known as earth mover distance, Rubinstein distance, Wasserstein distance
- $\operatorname{Tran}_{1}(P, Q)$: Distance between two probability distributions P, Q
If we want to turn P to Q , the metric is the cost of the optimal transportation T (i.e., $\int||x-T(x)||_{1} d P$)
E.g., in discrete case, it is the solution of the following LP:

$$
\begin{array}{r}
\text { minimize } \sum_{i, j} d\left(v_{i}, v_{j}\right) x_{i j} \text { subject to } \sum_{j} x_{i j}=P\left(\left\{v_{i}\right\}\right), \forall i \in[n], \\
\sum_{i} x_{i j}=Q\left(\left\{v_{j}\right\}\right), \forall i \in[n], \\
x_{i j} \in[0,1] \forall i \in[n], j \in[n] .
\end{array}
$$

Our Results

- The Coin problem: 1-dimension
- A mixture ϑ defined over $[0,1]$
- If mixture ϑ is a k-spike distribution (k different coins)
- Require k-snapshot ($k>1$) samples
- (H 0,T 1) w.p. 0.5
(H 1,T 0) w.p. 0.5

- (H 0.1, T 0.9) w.p. 0.5 (H 0.9, T 0.1) w.p. 0.5

- (H 0.5, T 0.5) w.p. 1

Our Results

The Coin problem: 1-dimension

- A mixture ϑ defined over $[0,1]$
- If mixture ϑ is a k-spike distribution, a lower bound is known
- Require k -snapshot ($\mathrm{k}>1$) samples
- Lower bound :To guarantee $\operatorname{Tran}_{1}(\vartheta, \widehat{\vartheta}) \leq O(1 / k)$ [Rabani,Schulman,Swamy'14]
(1) (2k-1)-snapshot is necessary
(2) We need $\exp (\Omega(k))(2 \mathrm{k}-1)$-snapshot samples

Our Result:

- A nearly matching upper bound:
$(k / \epsilon)^{O(k)} \log 1 / \delta \quad(2 \mathrm{k}-1)$-snapshot samples suffice (w.p. $1-\delta$)

Our Results

The Coin problem: 1-dimension

- A mixture ϑ over $[0,1]$
- ϑ is arbitrary (may even be continuous)
- Lower bound [Rabani,Schulman,Swamy'14]: Still applies. (rewrite a bit)
o We can use K-snapshot samples.
- We need $\exp (\Omega(K))$ K-snapshot samples to make $\operatorname{Tran}_{1}(\vartheta, \hat{\vartheta}) \leq O(1 / K)$
- Our Result
- A nearly matching upper bound
- Using $\exp (\mathrm{O}(K))$ K-snapshot samples, we can recover ϑ
s.t. $\operatorname{Tran}_{1}(\vartheta, \hat{\vartheta}) \leq O(1 / K)$

Our Results

Higher Dimension

- A mixture ϑ over Δ_{n}
- Assumption: ϑ is a k-spike distribution (think k very small, $\mathrm{k} \ll \mathrm{n}$)

Our result:

- Using poly(n) 1- and 2-snapshot samples and $(k / \epsilon)^{O\left(k^{2}\right)}(2 \mathrm{k}-1)$-snapshot samples, we can obtain a mixture $\widehat{\vartheta}$ s.t. $\operatorname{Tran}_{1}(\vartheta, \widehat{\vartheta}) \leq \epsilon$

Our Results

- Higher Dimension
- A mixture ϑ over Δ_{n}
- Assumption: ϑ is a k-spike distribution (think k very small, $\mathrm{k} \ll \mathrm{n}$)
- Why L1 distance?
- $P, Q \in \Delta^{n} \quad d_{T V}(P, Q)=\|P-Q\|_{1}$
- E.g. $\left(\frac{1}{n}, \ldots, \frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ and $\left(0, \ldots, 0, \frac{2}{n}, \ldots, \frac{2}{n}\right)$ are two very different distributions. But their L2 distance is small $(1 / \sqrt{n})$

Our Results

- Higher Dimension
- A mixture ϑ over Δ_{n}
- Assumption: ϑ is an arbitrary distribution
supported on a k-dim slice of Δ_{n}
(again think $\mathrm{k} \ll \mathrm{n}$)

A 2-dim slice in Simplex Δ_{4}

Our result:

- Using poly(n) 1- and 2-snapshot samples, and $(k / \epsilon)^{O(k)} K$-snapshot samples $(K=\operatorname{poly}(k, \epsilon))$, we can obtain a mixture $\widehat{\vartheta}$ s.t. $\operatorname{Tran}_{1}(\vartheta, \widehat{\vartheta}) \leq \epsilon$
- Problem Definition
- Related Work
- Our Results
- The Coin Problem
- Higher Dimension
- Conclusion

The Coin Problem

- A (even continuous) mixture ϑ of coins
- Consider a K-snapshot sample

$$
\operatorname{Pr}[\text { exactly } i \text { heads }]=\int\binom{K}{i} x^{i}(1-x)^{K-i} \mathrm{~d} \vartheta=\int B_{i, K}(x) \mathrm{d} \vartheta
$$

$\mathrm{fq}(\vartheta)=\{\operatorname{Pr}[$ exactly 0 heads $], \operatorname{Pr}[$ exactly 1 heads $], \ldots, \operatorname{Pr}[$ exactly K heads $]\}$
Using $\kappa^{-2} \log (K / \delta)$ samples, we can obtain $\|\widetilde{\mathrm{fq}}-\mathrm{fq}(\vartheta)\| \leq \kappa$

The Coin Problem

- A simple but useful lemma:

For any two distributions P and Q on $[0,1]$,

$$
\operatorname{Tran}(P, Q) \leq C \cdot\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1}+O(\lambda)
$$

C and λ satisfy the following statement:
For any $f \in 1-\operatorname{Lip}[0,1]$,

$$
f=\sum_{i} c_{i} B_{i, K} \pm O(\lambda) \quad \text { where } c_{0}, \ldots, c_{K} \in[-C, C]
$$

Pf based on the Dual formulation (Kantorovich\&Rubinstein)

$$
\operatorname{Tran}(P, Q)=\sup \left\{\left|\int f \mathrm{~d}(P-Q)\right|: f \in \underset{\sim 1-\operatorname{Lip}\}}{|f(x)-f(y)| \leq\|x-y\|}\right.
$$

The Coin Problem

$\operatorname{Tran}(P, Q) \leq C \cdot\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1}+O(\lambda)$.

- If we want to make $\operatorname{Tran}(P, Q) \leq \epsilon$
need $\left\{\begin{array}{l}\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1} \leq O(\epsilon / C) \\ \lambda=O(\epsilon)\end{array}\right.$

$$
\text { Require } \operatorname{poly}(C / \epsilon) \text { samples }
$$

The Coin Problem

$\operatorname{Tran}(P, Q) \leq C \cdot\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1}+O(\lambda)$.

- If we want to make $\operatorname{Tran}(P, Q) \leq \epsilon$
need $\left\{\begin{array}{l}\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1} \leq O(\epsilon / C) \\ \lambda=O(\epsilon)\end{array}\right.$
What C and λ can we achieve??

$$
f \in 1-\operatorname{Lip}[0,1] \quad f=\sum c_{i} B_{i, K} \pm O(\lambda) \quad \text { where } c_{0}, \ldots, c_{K} \in[-C, C]
$$

WELL KNOWN in approximation theory (e.g., Rivlin03):

$$
\left\|f-\sum_{i=0}^{K} f(i / K) B_{i, K}(x)\right\|_{\infty} \leq O(1 / \sqrt{K})
$$

Bernstein polynomial approximation
So, with $\operatorname{poly}(K) K$-snapshot samples, $\operatorname{Tran}=O(1 / \sqrt{K})$

The Coin Problem

$\operatorname{Tran}(P, Q) \leq C \cdot\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1}+O(\lambda)$.

- If we want to make $\operatorname{Tran}(P, Q) \leq \epsilon$
need $\left\{\begin{array}{l}\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1} \leq O(\epsilon / C) \\ \lambda=O(\epsilon)\end{array}\right.$
What C and λ can we achieve??

$$
f \in 1-\operatorname{Lip}[0,1] \quad f=\sum c_{i} B_{i, K} \pm O(\lambda) \quad \text { where } c_{0}, \ldots, c_{K} \in[-C, C]
$$

Jackson's theorem:

$$
f(x)=\sum_{i=0}^{K} t_{i} T_{i}(x) \pm O(1 / K) \quad\left|t_{i}\right| \leq \operatorname{poly}(K)
$$

By a change of basis $\left\{B_{i, K}\right\} \rightarrow\left\{T_{i}\right\}$

- Problem Definition
- Related Work
- Our Results
- The Coin Problem
- Higher Dimension
- Conclusion

High Dimensional Case

- A mixture ϑ over Δ_{n}
- ϑ is a k-spike distribution over
a k-dim slice A of $\Delta_{n}\left(k \ll_{n}\right)$

Outline:
A 2-dim slice in Simplex Δ_{4}

- Step 1: Reduce the learning problem from n-dim to k-dim (we don't want the snapshot\# depends on n)
- Step 2: Learn the projected mixture in the k-dim subspace (require $\operatorname{Tran}_{2} \leq \epsilon$, snapshot $\#$ depends only on k, ϵ)
- Step 3: Project back to Δ_{n}

High Dimensional Case

Step 1: From n-dim to k-dim

- Existing approach: apply SVD/PCA/Eigen decomposition to the 2-moment matrix, then take the subspace spanned by the first few eigenvectors
- Does NOT work!

High Dimensional Case

Step 1: From n-dim to k-dim

- Existing approach: apply SVD/PCA/Eigen decomposition to the 2-moment matrix, then take the subspace spanned by the first few eigenvectors
- Does NOT work!

Reason: we want $\operatorname{Tran}_{1}(\vartheta, \hat{\vartheta}) \leq \epsilon$ (L1 metric)

- L1 is not rotationally invariant. So it may happen (in the subspace) that $\|a-b\|_{1}=O(\sqrt{n})\|a-b\|_{2} \quad$ in some directions but $\|a-b\|_{1}=O(1)\|a-b\|_{2}$ in some other directions

Implication: in the reduced k-dim learning problem, we have to be very accurate in some directions (only by making snapshot\# depend on n)

High Dimensional Case

- Step 1: From n-dim to k-dim
- What we do:

Find a k^{\prime}-dim $\left(k^{\prime}<k\right)$ subspace B where the L1-ball is
almost spherical, and the supporting slice A is close to B
in L1 metric

High Dimensional Case

Step 1: From n-dim to k-dim

(sketch)

1. Put ϑ in an isotropic position: $r_{i}=\int x_{i} \mathrm{~d} \vartheta \in[1 / 2 n, 2 / n]$ (by deleting and splitting letters)
2. Compute the John Ellipsoid for a polytope $\mathcal{P}=\mathcal{H} \cap \operatorname{Span}(A)$ take the first few (normalized) principle axes, where $\mathcal{H}=[-C / n, C / n]^{n}$

High Dimensional Case

Step 2: Learn the projected mixture in the \boldsymbol{k}-dim subspace (sketch)
(1) project to a net of 1-dim directions
(2) Learn the 1-d projections
(3) Assemble the 1-d projections using LP

Similar to a Geometric Tomography question. Analysis uses Fourier decomposition and a multidimension version of Jackson theorem

- Problem Definition
- Related Work
- Our Results
- The Coin Problem
- Higher Dimension
- Conclusion

Conclusion

- Algorithms for learning mixtures of discrete distributions
- No assumption (on independence, conditional number etc.). Worst case analysis
- Tradeoff: Snapshot\#, Tran, \#samples
- Transportation distance

Thanks

lijian83@mail.tsinghua.edu.cn

More on Transportation Distance

- Def: $\operatorname{Tran}(P, Q)=\inf _{T}\|x-T(x)\| \mathrm{d} x$

$$
\text { where } T \text { is a transportation from } P \text { to } Q
$$

- The Dual formulation (Kantorovich\&Rubinstein)

$$
\begin{aligned}
\operatorname{Tran}(P, Q)=\sup \left\{\left|\int f \mathrm{~d}(P-Q)\right|:\right. & f \in 1-\operatorname{Lip}\} . \\
& |f(x)-f(y)| \leq\|x-y\|
\end{aligned}
$$

More on Transportation Distance

- Def: $\operatorname{Tran}(P, Q)=\inf _{T}\|x-T(x)\| \mathrm{d} x$ where T is a transportation from P to Q
- The Dual formulation (Kantorovich\&Rubinstein)

$$
\begin{aligned}
\operatorname{Tran}(P, Q)=\sup \left\{\left|\int f \mathrm{~d}(P-Q)\right|:\right. & f \in 1-\operatorname{Lip}\} . \\
& |f(x)-f(y)| \leq\|x-y\|
\end{aligned}
$$

If P, Q are finite supported discrete distributions, the above is simply the LP-duality
Primal: minimize $\sum_{i, j} d\left(v_{i}, v_{j}\right) x_{i j}$ subject to $\sum_{j} x_{i j}=P\left(\left\{v_{i}\right\}\right), \forall i \in[n]$,

$$
\begin{aligned}
& \sum_{i} x_{i j}=Q\left(\left\{v_{j}\right\}\right), \forall i \in[n], \\
& x_{i j} \in[0,1] \forall i \in[n], j \in[n] .
\end{aligned}
$$

Dual: maximize $\sum_{i} f_{i}\left(P\left(\left\{v_{i}\right\}\right)-Q\left(\left\{v_{i}\right\}\right)\right)$, subject to $f_{i}-f_{j} \leq d\left(v_{i}, v_{j}\right) \forall i \in[n], j \in[n]$.

The Coin Problem

- A simple but useful lemma:

For any two distributions P and Q on $[0,1]$,

$$
\operatorname{Tran}(P, Q) \leq C \cdot\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1}+O(\lambda)
$$

C and λ satisfy the following statement:
For any $f \in 1-\operatorname{Lip}[0,1]$,

$$
f=\sum_{i} c_{i} B_{i, K} \pm O(\lambda) \quad \text { where } c_{0}, \ldots, c_{K} \in[-C, C]
$$

Pf sketch: $\quad\left|\int f \mathrm{~d}(P-Q)\right|=\left|\sum_{i=0}^{K} c_{i} \int B_{i, K} \mathrm{~d}(P-Q)\right|+O(\lambda)$

$$
\begin{aligned}
& =\left|\sum_{i=0}^{K} c_{i}\left(\mathrm{fq}_{i}(P)-\mathrm{fq}_{i}(Q)\right)\right|+O(\lambda) \\
& \leq C \cdot\|\mathrm{fq}(P)-\mathrm{fq}(Q)\|_{1}+O(\lambda) .
\end{aligned}
$$

This holds for any 1-Lip function f .
So the lemma follows from the dual formulation

High Dimensional Case

Step 1: From n-dim to k-dim

1. Put ϑ in an isotropic position: $r_{i}=\int x_{i} \mathrm{~d} \vartheta \in[1 / 2 n, 2 / n]$ (by deleting and splitting letters)
2. Consider $\mathcal{H}=[-C / n, C / n]^{n}$ and the polytope $\mathcal{P}=\mathcal{H} \cap \operatorname{Span}(A)$ (C only depends on k and ϵ)
3. Compute the John Ellipsoid $\mathcal{E} \subseteq \mathcal{P} \subseteq \sqrt{k} \mathcal{E}$ with axes $\left\{e_{1}, \ldots, e_{k}\right\}$
4. Take the first few (normalized) principle axes

$$
B=\left\{b_{i}=\frac{e_{i}}{\left\|e_{i}\right\|_{2}}:\left\|e_{i}\right\|_{2} \geq \frac{\epsilon}{\sqrt{n}}\right\}
$$

High Dimensional Case

Step 2: Learn the projected mixture in the k-dim subspace

For a K-snapshot sample $\mathbf{S}=\left\{s_{1}, \ldots, s_{K}\right\}, s_{i} \in[n]$,
let $u(\boldsymbol{s})=\sum_{k=1 . . K} B_{S_{k}}$
Suppose we take N samples $\mathbf{S}_{\mathbf{1}}, \ldots, \mathbf{S}_{\boldsymbol{N}}$
The learnt project measure is the empirical measure

$$
\frac{1}{N} \sum_{i=1}^{N} \delta\left(B^{T} u\left(\mathbf{s}_{i}\right)\right)
$$

Delta func

