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Problem Definition

 Δ𝑛 = 𝑥 ∈ 𝑅+
𝑛 ||𝑥||1 = 1 }

 So each point in Δ𝑛 is a prob. distr. over [n]

 𝜗 is a prob. distr. over Δ𝑛 (unknown to us)

 Goal: learn 𝜗 (i.e., transportation distance in 𝐿1 at most 𝜖. 

Tran1 𝜗,  𝜗 ≤ 𝜖)

Mixture of discrete distributions



Problem Definition

 Δ𝑛 = 𝑥 ∈ 𝑅+
𝑛 ||𝑥||1 = 1 }

 So each point in Δ𝑛 is a prob. distr. over [n]

 𝜗 is a prob. distr. over Δ𝑛 (unknown to us)

 Goal: learn 𝜗 (i.e., transportation distance in 𝐿1 at most 𝜖. 
Tran1 𝜗,  𝜗 ≤ 𝜖)

 A 𝒌-snapshot sample:  (k: snapshot#)
 Take a sample point 𝑥 ∼ 𝜗 (𝑥 ∈ Δ𝑛) (we don’t get to observe 𝑥

directly)

 Take 𝑘 i.i.d. samples 𝑠1𝑠2 … 𝑠𝑘 from 𝑥 (we observe 𝑠1𝑠2 … 𝑠𝑘, called a 
k-snapshot sample)

 Question:

How large the snapshot# 𝒌 needs to be in order to learn 𝝑??  

How many 𝒌-snapshot samples do we need to learn 𝝑 ??
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Related Work

 Previous work

 Mixture of Gaussians: a large body of work

 Only need 1-snapshot samples

 k-snapshot (k>1) is necessary for mixtures of discrete distributions

 Learn the parameters

 Topic Models

 𝜗 is a mixture of topics (each topic is a distribution of words)

How a document is generated：

 Sample a topic from 𝑥 ∼ 𝜗 (𝑥 ∈ Δ𝑛)

 Use 𝑥 to generate a document of size k (a document is a k-

snapshot sample)



Related Work
 Previous work

 Mixture of Gaussians: a large body of work

 Only need 1-snapshot samples
 k-snapshot (k>1) is necessary for mixtures of discrete distribution

 Topic Models
 Various assumptions:

 LSI, Separability [Papadimitriou,Raghavan,Tamaki,Vempala’00]

 LDA [Blei, Ng, Jordan’03]

 Anchor words [Arora,Ge,Moitra’12] (snapshot#=2)

 Topic linear independent [Anandkumar, Foster, Hsu, Kakade, Liu’12] 
(snapshot#=O(1))

 Several others

 Collaborative Filtering
 L1 condition number [Kleinberg, Sandler ‘08]
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Transportation Distance

 Also known as earth mover distance, Rubinstein distance, 

Wasserstein distance

 Tran(𝑃, 𝑄): Distance between two probability 

distributions 𝑃, 𝑄

If we want to turn P to Q, the metric is the cost of the 

optimal transportation T (i.e., ∫ ||𝑥 − 𝑇(𝑥)||𝑑𝑃)

E.g., in discrete case, it is the solution of the following LP:



Transportation Distance

 Also known as earth mover distance, Rubinstein distance, 

Wasserstein distance

 Tran1(𝑃, 𝑄): Distance between two probability 

distributions 𝑃, 𝑄

If we want to turn P to Q, the metric is the cost of the 

optimal transportation T (i.e., ∫ 𝑥 − 𝑇 𝑥
1
𝑑𝑃)

E.g., in discrete case, it is the solution of the following LP:



Our Results

 The Coin problem: 1-dimension

 A mixture 𝜗 defined over [0,1]

 If mixture 𝜗 is a k-spike distribution (k different coins)

 Require k-snapshot (k>1) samples

0 1

0 1

0 1

• (H 0,T 1) w.p. 0.5           (H 1,T 0) w.p. 0.5

• (H 0.1, T 0.9) w.p. 0.5    (H 0.9, T 0.1) w.p. 0.5

• ……

• (H 0.5, T 0.5) w.p. 1



Our Results

The Coin problem: 1-dimension

 A mixture 𝜗 defined over [0,1]

 If mixture 𝜗 is a k-spike distribution, a lower bound is known 

 Require k-snapshot (k>1) samples

 Lower bound : To guarantee Tran1 𝜗,  𝜗 ≤ 𝑂(1/𝑘)
[Rabani,Schulman,Swamy’14]

(1)   (2k-1)-snapshot is necessary

(2)   We need exp(Ω(𝑘)) (2k-1)-snapshot samples 

Our Result:  

 A nearly matching upper bound:

𝑘/𝜖 𝑂(𝑘)log 1/𝛿 (2k-1)-snapshot samples suffice (w.p. 1 − 𝛿)



Our Results

The Coin problem: 1-dimension

 A mixture 𝜗 over [0,1]

 𝜗 is arbitrary (may even be continuous)

 Lower bound [Rabani,Schulman,Swamy’14]: Still applies. (rewrite a bit)

o We can use K-snapshot samples. 

o We need exp(Ω(𝐾)) K-snapshot samples to make 

Tran1 𝜗,  𝜗 ≤ 𝑂(1/𝐾)

 Our Result

 A nearly matching upper bound

 Using exp(O(𝐾)) K-snapshot samples, we can recover 𝜗

s.t. Tran1 𝜗,  𝜗 ≤ 𝑂(1/𝐾)

A tight tradeoff between K and transportation distance



Our Results

Higher Dimension

 A mixture 𝜗 over Δ𝑛

 Assumption: 𝜗 is a k-spike distribution (think k very small, 

k<<n)

Our result:

 Using poly(n) 1- and 2-snapshot samples and                       

𝑘/𝜖 𝑂(𝑘2) (2k-1)-snapshot samples, we can obtain a 

mixture  𝜗 s.t. Tran1 𝜗,  𝜗 ≤ 𝜖

L1 distance. Harder than L2



Our Results

 Higher Dimension

 A mixture 𝜗 over Δ𝑛

 Assumption: 𝜗 is a k-spike distribution (think k very small, 

k<<n)

 Why L1 distance?

 𝑃, 𝑄 ∈ Δ𝑛 𝑑𝑇𝑉 𝑃, 𝑄 = ||𝑃 − 𝑄||1

 E.g., 
1

𝑛
, … ,

1

𝑛
,
1

𝑛
, … ,

1

𝑛
and 0, … , 0,

2

𝑛
, … ,

2

𝑛
are two very 

different distributions. But their L2 distance is small (1/ 𝑛)



Our Results

 Higher Dimension

 A mixture 𝜗 over Δ𝑛

 Assumption: 𝜗 is an arbitrary distribution 

supported on a k-dim slice of Δ𝑛

(again think k<<n)

Our result:

 Using poly(n) 1- and 2-snapshot samples, and  
𝑘/𝜖 𝑂(𝑘) K-snapshot samples (𝐾 = poly(𝑘, 𝜖)),  we can 

obtain a mixture  𝜗 s.t. Tran1 𝜗,  𝜗 ≤ 𝜖

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

A 2-dim slice in Simplex Δ4

(1,0,0,0)
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The Coin Problem

 A (even continuous) mixture 𝜗 of coins

 Consider a K-snapshot sample

Bernstein Polynomial

Using samples, we can obtain



The Coin Problem

 A simple but useful lemma:

𝑓 𝑥 − 𝑓 𝑦 ≤ ||𝑥 − 𝑦||

Pf based on the Dual formulation (Kantorovich&Rubinstein)



The Coin Problem

 If we want to make 

need             
Require poly(𝐶/𝜖) samples



The Coin Problem

 If we want to make 

need             
Require poly(𝐶/𝜖) samples

What C and 𝝀 can we achieve??

WELL KNOWN in approximation theory (e.g., Rivlin03):

So, with poly(𝐾) K-snapshot samples, Tran = 𝑂(1/ 𝐾)

Bernstein polynomial approximation



Jackson’s theorem:

The Coin Problem

 If we want to make 

need             
Require poly(𝐶/𝜖) samples

What C and 𝝀 can we achieve??

with 𝐞𝐱𝐩(𝑲) K-snapshot samples, Tran = 𝑂(1/𝐾)

Chebyshev polynomials
By a change of basis 
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High Dimensional Case

 A mixture 𝜗 over Δ𝑛

 𝜗 is a k-spike distribution over 

a k-dim slice A of Δ𝑛 (k<<n)

Outline:

 Step 1: Reduce the learning problem from n-dim to k-dim

(we don’t want the snapshot# depends on n)

 Step 2: Learn the projected mixture in the k-dim subspace

(require Tran2≤ 𝜖,  snapshot# depends only on k, 𝜖)

 Step 3: Project back to Δ𝑛

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

A 2-dim slice in Simplex Δ4

(1,0,0,0)



High Dimensional Case

Step 1: From n-dim to k-dim

 Existing approach: apply SVD/PCA/Eigen decomposition to 

the 2-moment matrix, then take the subspace spanned by the 

first few eigenvectors

 Does NOT work!



High Dimensional Case

Step 1: From n-dim to k-dim

 Existing approach: apply SVD/PCA/Eigen decomposition to 

the 2-moment matrix, then take the subspace spanned by the 

first few eigenvectors

 Does NOT work!

Reason: we want Tran1 𝜗,  𝜗 ≤ 𝜖 (L1 metric)

 L1 is not rotationally invariant. So it may happen (in the subspace) that

in some directions

but                                                  in some other directions 

Implication: in the reduced k-dim learning problem, we have to be very 

accurate in some directions (only by making snapshot# depend on n)



High Dimensional Case

 Step 1: From n-dim to k-dim

 What we do:

Find a k’-dim (k’<k) subspace B where the L1-ball is

almost spherical, and the supporting slice A is close to B

in L1 metric



High Dimensional Case

Step 1: From n-dim to k-dim

(sketch)

1. Put 𝜗 in an isotropic position:                                                     

(by deleting and splitting letters)

2. Compute the John Ellipsoid for a polytope                          and 

take the first few (normalized) principle axes, where



High Dimensional Case

Step 2: Learn the projected mixture in the k-dim subspace 

(sketch)

(1) project to a net of 1-dim directions

(2) Learn the 1-d projections 

(3) Assemble the 1-d projections using LP

Similar to a Geometric Tomography question.

Analysis uses Fourier decomposition and a 

multidimension version of Jackson theorem 
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Conclusion

 Algorithms for learning mixtures of discrete distributions

 No assumption (on independence, conditional number etc.). 

Worst case analysis

 Tradeoff: Snapshot#, Tran, #samples

 Transportation distance



Thanks

lijian83@mail.tsinghua.edu.cn



More on Transportation Distance

 Def: 

where T is a transportation from P to Q

 The Dual formulation (Kantorovich&Rubinstein)

𝑓 𝑥 − 𝑓 𝑦 ≤ ||𝑥 − 𝑦||



More on Transportation Distance

 Def: 

where T is a transportation from P to Q

 The Dual formulation (Kantorovich&Rubinstein)

If P, Q are finite supported discrete distributions, the above is 

simply the LP-duality

𝑓 𝑥 − 𝑓 𝑦 ≤ ||𝑥 − 𝑦||

Primal:

Dual:



The Coin Problem

 A simple but useful lemma:

Pf sketch:

This holds for any 1-Lip function f. 

So the lemma follows from the dual formulation 



High Dimensional Case

1. Put 𝜗 in an isotropic position:                                                     

(by deleting and splitting letters)

2. Consider                                   and the polytope

(C only depends on k and 𝜖)  

3. Compute the John Ellipsoid with axes  

4. Take the first few (normalized) principle axes 

Step 1: From n-dim to k-dim



High Dimensional Case
Step 2:  Learn the projected mixture in the k-dim subspace

B=

For a K-snapshot sample 𝐬 = 𝑠1, … , 𝑠𝐾 , 𝑠𝑖 ∈ 𝑛 ,

let 𝑢 𝒔 =  𝑘=1..𝐾 𝐵𝑠𝑘

Suppose we take N samples 𝐬𝟏, … , 𝐬𝑵

The learnt project measure is the empirical measure

n

h𝐵1 𝐵𝑛𝐵2

Delta func


