What Can We Learn from Four Years of
Data Center Hardware Failures?

Guosai Wang, Wei Xu

Institute for Interdisciplinary Information Sciences

Tsinghua University, Beijing, China

Lifei Zhang
Baidu, Inc., China
zhanglifei @baidu.com

wgs14 @mails.tsinghua.edu.cn, weixu@tsinghua.edu.cn

Abstract—Hardware failures have a big impact on the de-
pendability of large-scale data centers. We present studies on
over 290,000 hardware failure reports collected over the past four
years from dozens of data centers with hundreds of thousands of
servers. We examine the dataset statistically to discover failure
characteristics along the temporal, spatial, product line and
component dimensions. We specifically focus on the correlations
among different failures, including batch and repeating failures,
as well as the human operators’ response to the failures. We
reconfirm or extend findings from previous studies. We also find
many new failure and recovery patterns that are the undesirable
by-product of the state-of-the-art data center hardware and
software design.

I. INTRODUCTION

To meet the ever-growing demand for Internet services,
people build extremely large-scale data centers. The hardware
reliability has always been a crucial factor in the overall
dependability of these IT infrastructures. Hardware failures are
common in large-scale systems [I, 2], and these failures may
cause service level agreement (SLA) violations and severe loss
of revenue [3].

It is important to understand the failure model, as it helps
to strike the right balance among software stack complexity,
hardware and operation cost, reducing the total cost of own-
ership (TCO) in data centers. In fact, researchers have studied
hardware failures for decades, from Gray’s study in 1986 [4]
to Oppenheimer’s in 2003 [2] to the recent research [5—19],
failure patterns change over time as the computer system
design evolves. Many recent studies focus on supercomputers
instead of commodity data centers or a single component such
as memory or hard drive [11, 16-21].

Today’s data centers are different in many aspects. On
the positive side, the hardware components are designed and
manufactured to be more reliable. There are also better failure
detection systems making hardware failures easier to notice
and repair. Moreover, operators have accumulated more expe-
rience on how to maintain large-scale infrastructures. However,
on the dark side, Internet companies become more cost-
sensitive, and people adopt less-reliable, commodity or custom
ordered hardware [!]. There is also more heterogeneity in
both hardware components and workload, resulting in more
complex failure models.

Most interestingly, in addition to the common belief that
hardware unreliability shapes the software fault tolerance de-
sign, we believe it is also the other way around: years of

improvement in software-based fault tolerance has indulged
operators to care less about hardware dependability.

With all the changes, we believe it is now necessary
to conduct a new study on failures in modern large-scale
Internet data centers. In this paper, we present a comprehensive
analysis of failures during the past four years from a major
and successful Internet service company that operates dozens
of data centers hosting hundreds of thousands of servers,
serving hundreds of millions of users every day. Different from
previous studies on a single supercomputer, our data centers
host generations of heterogeneous hardware, both commodity
and custom design, and support hundreds of different product
lines. Also, we cover all hardware component classes as well
as human operators’ behavior in the study.

Specifically, we analyze all the hardware failure operation
tickets (FOTs) collected from a centralized failure management
system (FMS) that monitors most of the servers and records
all component failures together with the operators’ actions.
We observe over 290,000 such FOTs during the past four
years. We draw statistically meaningful conclusions about
these failures.

In the paper, we study the failures along different dimen-
sions, including time, space, product lines owning the servers,
operator’s response, etc. We first explore the temporal and
spatial distributions of failures in different components. Then
we focus on correlated failures as people believe they affect
software fault tolerance the most. Finally, we describe the
operators’ response to these failures.

To our best knowledge, this is the largest comprehensive
hardware failure study focusing on commodity Internet data
centers in a decade. We cover all major components as well as
the human operator behaviors. During the study, we confirm
or extend many counter-intuitive observations from previous
studies, and observe many new patterns. For example,

1) Failures are not uniformly random at different time
scales, and sometimes not even uniformly random at different
spaces in a data center. We see many correlated failures. We
even observe batch failures affecting thousands of servers in
a few hours. These observations contradict software design
assumptions of independent and uniformly random failures.

2) The time between failures (TBF), both at a data center
scale and at an individual component scale, is hard to model
with a well-known distribution. Different components exhibit
highly distinctive failure patterns.

TABLE 1. CATEGORIES OF FAILURE OPERATION TICKETS.

Failure trace Handling decision Percentage
D_fixing Issue a repair order (RO) 70.3%
D_error Not repair and set to decommission 28.0%

D_falsealarm Mark as a false alarm 1.7%

3) Despite the fact that the traditional doctrine says that
we should reduce mean time to recover (MTTR) to improve
dependability, operators are reluctant to respond to hardware
failures in many cases. Also, the operators spend less time
debugging a failure to find the root cause, but are more likely to
order a replacement for the component. They sometimes even
leave the failures unhandled, if the server is out-of-warranty.

These observations are highly related to the new software
design and workload in the data centers, as we will discuss in
the paper. These failure patterns suggest not only better ways
to develop new failure management systems but also calls for
a new methodology for designing fault handling mechanisms.

The remainder of the paper is organized as follows: Sec-
tion II introduces the dataset and our analysis methodology.
Section III and I'V discuss the temporal and spatial failure pat-
terns for different components. Section V focus on the analysis
of correlated failures. We highlight the operators’ response to
failures in Section VI. In Section VII we summarize our key
findings and their implications to future dependability design.
We review related studies in Section VIII and conclude in
Section IX.

II. METHODOLOGY AND DATASETS

We conduct this study on a dataset containing all hardware
failure operation tickets (FOTs) collected over the past four
years from a major Internet service company that operates
dozens of data centers with hundreds of thousands of servers.
There are hundreds of thousands of FOTs in three categories,
D_fixing, D_error and D_falsealarm. Table I shows definition
and breakdown of each category. Operators do not repair
failure in D_error mainly because the servers are out-of-
warranty. The typical action to D_fixing is to issue a repair
order (RO). Note that a separate group of contractors handle
the actual ROs, and our dataset does not contain the detail. As
far as our operators’ concern, issuing an RO closes an FOT.

We can see that over 1/4 of the failures are in out-of-
warranty hardware and thus are not handled at all. Operators
leave the partially failed but operational servers in production
and decommission the totally broken ones. We also notice that
the false alarm rate is extremely low, showing the effectiveness
(high precision) of hardware failure detection.

There are two sources for FOTs: programmatic failure
detectors and human operators. Both sources enter FOTs into
a central failure management system (FMS). Figure 1 shows
the simplified architecture of the FMS and the failure handling
workflow.

FMS has agents on most of the hosts' that detect hardware
component failures. A (logically) centralized server collects all
FOTs from the agents for operators’ review.

I'There are still some old unmonitored servers, but the monitoring coverage
has increased significantly during the four years.

Operators
HMS
Agent Servers
Failure Records
v Operators/Programs
Hardware —
Monitor » Failure >
System (HMS) Pool
N~
> Failure_Operation
Tickets
Log
N~

Repair
Process

Fig. 1. Simplified failure management system (FMS) architecture.

FMS records over 70 types of failures covering nine
component classes, including hard drive, SSD, RAID card,
flash card, memory, motherboard, CPU, fan, and power supply.
There is a special class, miscellaneous, covering all failures
manually entered by human operators. These miscellaneous
FOTs come with a natural language problem description,
but most do not contain the root cause. They account for
about 10% of the FOTs. FMS agents automatically detect the
other 90% failures by two means: listening to syslogs and
periodically polling device status and other metadata.

Each FOT contains the following self-explanatory fields
describing the failure: id, host_id, hostname, host_idc,
error_device, error_type, error_time, error_position, er-
ror_detail. The FOTs in D_fixing and D_falsealarm also
contain fields describing the operators’ responses, including
the action taken (usually an RO), the operator’s user ID, and
the timestamp op_time of the action.

We need to point out that there are many definitions of
hardware failures other than a fatal stop. Even within the
company among different product lines, there is no agree-
ment whether to consider temporarily or partially misbehaving
hardware, such as a disk drive with SMART (Self-Monitoring
Analysis And Reporting Technology) alerts or occasional
read/write exceptions, as failed. Specifically, in this paper, we
consider every FOT in D_fixing or D_error as a failure.

A. FOT overview

In this section, we provide an overview of the FOTs in
our datasets. Table II shows the breakdown of these FOTs
by component classes, in both D_fixing and D_error (i.e. ex-
cluding false alarms). Not surprisingly, hard drive failures are
most common in all data centers we investigate, accounting for
about 82% of all failures. Other components, such as memory,
power supplies, SSDs and RAID cards, only contribute to
about 8% combined. Even the fraction is small, there are still
at least thousands of failures for each component class, enough
to be statistically meaningful.

TABLE II. FAILURE PERCENTAGE BREAKDOWN BY COMPONENT.

Device Proportion
HDD 81.84 %
Miscellaneous 10.20 %
Memory 3.06 %
Power 1.74 %
RAID card 1.23 %
Flash card 0.67 %
Motherboard 0.57 %
SSD 031 %
Fan 0.19 %
HDD backboard 0.14 %
CPU 0.04 %

TABLE III. EXAMPLES OF FAILURE TYPES.

Failure type Explanation

SMARTFail Some HDD SMART value exceeds the predefined threshold.
RaidPdPreErr The prediction error count exceeds the predefined threshold.
Missing Some device file could not be detected.

NotReady Some device file could not be accessed.

PendingLBA Failures are detected on the sectors that are not accessed.
TooMany Large number of failed sectors are detected on the HDD.
DStatus 10 requests are not handled by the HDD and are in D status.
BBTFail The bad block table (BBT) could not be accessed.

HighMaxBbRate| The max bad block rate exceeds the predefined threshold.

RaidVdNoBBU | Abnormal cache setting due to BBU (Battery Backup Unit)
-CacheErr is detected, which degrades the performance.

DIMMCE Large number of correctable errors are detected.
DIMMUE Uncorrectable errors are detected on the memory.

About 10.2% FOTs are manually submitted miscellaneous
failures. These failures are complicated. In fact, operators do
not leave any description in 44% of these failures and suspect
about 25% to be hard drive related. They mark another 25%
as “server crashes” without clear reasons. As we will see later,
operators generate many of these FOTs during the deployment
phase, when they try to debug problems manually.

Our dataset contains many types of failures for each com-
ponent class. Table III shows some examples. Figure 2 shows
the percentage of each failure type for four representative
component classes. Some failures are fatal (e.g. NotReady in
a hard drive) while others warn about potential failures (e.g.
SMARTFail).

B. Analytical methods

Visually, we characterize the temporal and spatial proper-
ties of hardware failures by plotting the probability density
functions (PDF) or cumulative distribution functions (CDF).

Statistically, similar to previous work [5, 17], we conduct
hypothesis tests to verify how well the observed distribution
functions fit some well-known probability distributions, includ-
ing uniform, exponential, Weibull gamma, and lognormal.

To see if a dataset fits a given distribution, we first estimate
the parameters of the fitting distributions through maximum
likelihood estimation (MLE) and then adopt Pearson’s chi-
squared test, a widely used hypothesis test on distributions
of discrete random variables. For each null hypothesis we
create on the distribution of a certain random variable, the
test result is whether we can reject it at a certain significance
level. The result implies whether the null hypothesis is a good
characterization of the observations.

Others

SMARTFail
18.5%

DStatus
TooMany
PendingLBA

BadSector
RaidPdMediaErr
MediumErr
NotReady
Missing

RaidPdPreErr

PredictErr

RaidPdFailed

(a) HDD

RaidVdNoBBUCacheErr
CtriStatus

CacheStatus

Others RaidBBUFailed

43.8%

RaidCardReset

(b) RAID card

Others
BBTFail

BadBlocks
WriteFail

HighBitFlip

ReadInfoFail HighMaxBbRate

InitRAIDError

(c) Flash card

Others

6.0%,

DIMMUE

60.7%
DIMMCE

(d) Memory

Fig. 2. Failure type breakdown of four example component classes.

III. TEMPORAL DISTRIBUTION OF THE FAILURES

The common belief is that components can fail at any time
in a uniformly random way. In this section, we investigate the
temporal distribution of the hardware failures. Focusing on the
error_time, or the failure detection timestamp, in D_fixing and
D_error (i.e. excluding false alarms), we analyze the number
of failures in different time periods, the time between failures
(TBF) for each component class and the failure probability
during the life span of a single component.

A. Number of failures at different time periods.

Hypothesis 1. The average number of component failures is
uniformly random over different days of the week.

Figure 3 shows the average number of failures during each
day of the week. Due to limited space we only present the
components with the most number of failures, and due to
confidentiality concerns, we normalize the count to the total
number of failures. It is obvious from the figure that the
failure rates vary and are not uniformly distributed on each
day in a week. More formally, a chi-square test can reject the
hypothesis at 0.01 significance level for all component classes.
Even if we exclude the weekends, a chi-square test still rejects
the hypotheses at 0.02 significance level. The test indicates
that failures do not occur uniformly randomly in each day of
a week.

Hypothesis 2. The average number of component failures is
uniformly random during each hour of the day.

Similarly, we calculate the number of failures during each
hour in the day. Figure 4 shows eight component classes with
the most number of failures. A similar chi-square test rejects
the hypothesis at 0.01 significance for each class.

Possible Reasons. 1) The number of failures of some com-
ponents are positively correlated with the workload. This is
especially true for hard drive, memory and miscellaneous
failures, as Figure 4 (a), (b) and (h) show. Such correlation
between the failure rate and the workload is consistent with
findings in [5, 22].

We want to emphasize that this correlation might not imply
the causality that low workload reduces the probability of
hardware failures. In fact, we believe that the higher utilization
causes failures more likely to be detected asynchronously. For
example, the agents detect hard drive and memory failures by
monitoring specific log messages (e.g. dmesg) that are more
likely to occur under heavy utilization.

This observation reveals the limitation of log-based failure
detection - it does not detect failures in a component until
it gets used. Also, detecting failures only when the workload
is already heavy increases the performance impact of such
failure. The failure management team is working on an active
failure probing mechanism to solve the problem.

2) If failure reporting requires the human in the loop, the
detection likely to happen during working days and regular
working hours. This is true for most manually reported mis-
cellaneous failures.

3) Some components tend to fail in large batches during a
small period of time. For example, a large batch of failed RAID

0.20 — . . . - - - 0.20
c 015 o 015}
Rl kel
0 o.10 1 0 0.10
© ©
o o
L 0.05 L 0.05
0.00 - 0.00 .
MonTueWedThu Fir Sat Sun MonTueWedThu Fir Sat Sun
(a) HDD (b) Memory
0.40 — 0.25
033 0.20
c 030 :
2025 O 015
0 0.20 ©
E 0.15} ug: 0.10
0.10 0.05
0.05 4
0.00 0.0

MonTueWedThu Fir Sat Sun 0MonTueWedThu Fir Sat Sun

(c) RAID card (d) Miscellaneous

Fig. 3. The fraction of number of failures on each day of the week.

cards of the same model makes the distribution in Figure 3 (c)
highly skewed, and we can also see many notable high spikes
in almost all the plots in Figure 4. We discuss more about such
batch failures in Section V-A.

B. Time between failures (TBF)

In this section, we focus on the distribution of the time
between failures (TBF) for each component class. The com-
mon belief is that the failure occurrences in a system follow
a Poisson process, and thus people often model the TBF
with an exponential distribution. However, previous studies
show that the distribution of TBF for the hard drives or the
HPC systems cannot be well characterized by exponential
distribution [5, 17, 23]. We extend the result and show the TBF
for each component class, as well as all components combined.

Hypothesis 3. TBF of all components in the data centers
follows an exponential distribution.

We conduct the same chi-square test as previously de-
scribed, and the chi-square test rejects the hypothesis at the
0.05 significance level. In fact, Figure 5 shows that none
of the distributions including exponential, Weibull, gamma
and lognormal fits the TBF data. The observation is different
from some previous studies [5, 24-26], who report that the
TBF of HPC and cloud (including hardware failures) can
be well characterized by a Weibull distribution or a gamma
distribution. We believe the disagreement is the result of
the wide presence of batch failures, which makes the TBF
distribution highly skewed, in the data centers we examine,
which we discuss more below.

Hypothesis 4. TBF of each individual component class follows
an exponential distribution.

We then break down the analysis to each component class.
We also break down the failure by product lines. All the
results are similar, that is, the hypotheses that the TBF follows
exponential, Weibull, gamma or lognormal distributions can be
rejected at the 0.05 significance level. We omit the figures here
due to space limitation.

0.12

Fraction
Fraction

6 12 18 24 6

(a) HDD (b) Memory

0.12

Fraction

6 12 18 24 6

(e) SSD (f) Power

0.30

0.25
0.20
0.15

Fraction

0.10
0.05

0.00
6 12 18 24 0 6 12 18 24

(c) Motherboard (d) RAID card

Fraction

6 12 18 24

6 12 18 24

(g) Flash card (h) Miscellaneous

Fig. 4. The fraction of number of failures on each hour in a day. The values on the horizontal axis of each subfigure indicate the hours in a day.

L
[m]
O
7 — — Exp
L - —+— Weibull
0.2F Gamma
‘‘‘‘‘‘ LogNormal
— Data
0 .
10° 10' 10?

Time between Failures (min)

Fig. 5. CDF of TBF for all component failures, as well as some fitted
distributions. The horizontal axis is on a logarithmic scale.

Possible Reasons. Two possible reasons cause the deviation
of TBF from the exponential distribution.

1) As previous work has pointed out, the failure rates
change over the lifetime of each component, or the entire
system. This change affects the TBF over time in a way that
the exponential distribution cannot capture [17]. We will take
a closer look at the fact in Section III-C.

2) We observe lots of small values in TBFs, indicating that
there are short time periods with many failure occurrences. The
MTBF (mean time between failures) across all data centers
we investigate (with hundreds of thousands of servers) is only
6.8 minutes, while the MTBF in different data centers varies
between 32 minutes and 390 minutes. None of the distributions
mentioned above capture these small TBF values, as Figure 5
shows. These small TBFs are related to the correlated failures
especially batch failures we will discuss in Section V.

C. Failure rate for a single component in its life cycle

People commonly believe that the likelihood of a com-
ponent failure is related to its life-in-service [5, 17]. Previous
studies [7] show the probability of hard drive failure cannot be

well characterized by a bathtub curve model [27], in which the
failure rates are high both at the beginning (“infant mortality”)
and the end (“wear-out”) of the lifecycle. In this section, we
verify the claim on all the major component classes.

We consider the monthly failure rate (FR) for each com-
ponent in its lifecycle’. We normalize all failure rates for
confidentiality, and Figure 6 shows the change of failure rates
of each component class during their first four years of service
life. The main observations are as follows.

Infant mortalities. RAID cards obviously have high infant
mortality rate (Figure 6 (f)). Of all the RAID cards that failed
within fifty months of its service life, 47.4% of the failures
happen in the first six months.

We observe some infant mortalities in hard drives during
the first three months, with 20.0% higher failure rate than that
of the 4th to 9th month (Figure 6 (a)). We also see that the
failure rates start to increase only six months after deployment,
and rise significantly over the following couple of years. This
is consistent with previous studies [!7] but differs from the
“bathtub curve”, where the failure rates stay low and stable
for much longer (e.g. at least a year).

Interestingly, we observe that the miscellaneous failure
rates (Figure 6 (i)) are extremely high within the first month.
After the first month, the failure rates become relatively stable.
The reason is that most manual detection and debugging efforts
happen only at deployment time. During normal operation,
operators often respond to component failures with a simple
replacement order, without much manual effort to debug. The
“lazy” actions reduce the number of miscellaneous FOTs for
older components.

Failures in motherboards, flash cards, fans, and power
supplies (Figure 6 (c)(e)(g)(h)) are rare in the early years of
servers’ lifecycles. This effect may be related to the quality as-
surance process during manufacturing. Also, at the deployment

2 The dataset reports the number of HDDs, SSDs, and CPUs on each server,
and thus for these three categories, we know the numbers of properly-working
components during each interval, which are used to compute the failure rates.
For other components, we assume that the component count per server is
similar, and use the number of servers as an estimation.

-
o
I
o

(b) Memory

Normalized FR

30 20 30

(c) Motherboard

(e) Flash card

0.2

0.0 _L_M

30 40 50 0 10 20 30 40 50
(f) Raid Card

Normalized FR

o o
[y [V
o) e)
(0] (0]
N N
S T
1S IS
£ £
[e] o
=2 =2
20 30 20
(a) HDD
1.0
o o
[y 0.8 [V
° ®
N 0.6 N
© 0.4 ©
€ IS
502 5
=2 00 =2
o 20 30 o 10 20
(d) SSD
1.0
o o
(1N 0.8 (1
° ®
N 06 N
T o T
€ €
5 02 5
=2 =2
0.0

0 20 30

20

(¢) Fan

(h) Power

Normalized FR

30 o 10 20 30 40 50

(i) Miscellaneous

Fig. 6. Normalized monthly failure rates for each component class. The values on the horizontal axis of each subfigure indicate the time in production use (in
months). Some components are omitted because the numbers of the samples are small.

and initial testing phase, operators may have already marked
these failed components as miscellaneous.

Wear out. We observe an increase in failures in many
component classes when they get older. The wear-out rate is
different for these classes. For example, most (72.1%) of the
motherboard failures occur three years after deployment.

Although only 1.4% of failures happen during the first 12
months for flash cards, failure rates rise fast after that, showing
strong correlated wear-out phenomena. Memory failures show
a similar pattern (Figure 6 (b)), though the failure rate is
relatively stable during the first year, it gets higher starting
between the 2nd and 4th year.

Mechanical components such as hard drives, fans, and
power supplies (with fans too) (Figure 6 (a)(g)(h)) also exhibit
strong, clear wear and tear pattern, as the failure rates are
relatively small during the first year and gradually increases
as servers get older.

D. Repeating failures and the effectiveness of repairs

We observe that a small number of server components
fail repeatedly. We define repeated failures as cases when the
problem marked “solved” (either by operators or an automatic
reboot), but the same problem happens again afterward.

There are not many repeating failures. In fact, as operators
“repair” a component usually by replacing the entire module,
which is effective most of the time. Over 85% of the fixed
components never repeat the same failure. We estimate that
about 4.5% of all the servers that ever failed (thousands of
servers) have suffered from repeating failures.

1.0

n 0.8}

g

=}

= 0.6

©

w

Y

O 041

L

[a)

O o2

0.0 L L
1 2 3 4 5
Percentage of Failed Servers (%)
Fig. 7. CDF of the number of failures w.r.t. the percentage of the servers

that ever failed.

However, surprisingly we observe that 2% of servers that
ever failed contribute more than 99% of all failures. In other
words, the failures are extremely non-uniformly distributed
among the individual servers. Figure 7 shows the CDF of the
number of failures with respect to the fraction of the servers
that ever failed. This observation is consistent with findings
in [7, 10, 22, 24].

As an extreme example, we observe that one single server
in a web service product line reports over 400 failures, either
on RAID card or hard drives. The root cause is a BBU (Battery
Backup Unit) failure causing the RAID card to be up-and-
down. Each time, after an automatic recovery program reboots
the server, the hard drive becomes online again, and thus the
problem is marked “solved”. However, it will fail again very
soon. Without human intervention, the process has repeated for
almost a year before someone finally realizes the root cause
(the BBU) and solves the problem.

TABLE IV. CHI-SQUARE TEST RESULTS FOR HYPOTHESIS 5.
p-value Ratio
p < 0.01 10 out of 24
0.01 < p < 0.05 4 out of 24
p > 0.05 10 out of 24
0.045
¥ 0.040 [
o
> 0.035 -
c
& o0.030 Mva - e |
D o025}
B 0.020
‘S 0.015H
2 o.010f
=
©
¢ 0.005H
0.000
0 10 15 20 25 30 35
Positions on the Rack
(a) Data center A
0.07
& 0.06 |]
o M —
s M R
& “®lave |- _F | O ey PSS | | I
E 0.04
® 0.03
o«
© .02}
o
T 0.01
So
0.00
5 10 15 20
Positions on the Rack
(b) Data center B
Fig. 8. The failure ratio at each rack position. (a) In data center A,

Hypothesis 5 cannot be rejected by a chi-square test at 0.05 significance.
(b) In data center B, Hypothesis 5 can be rejected at 0.01 significance.

As a more interesting observation, multiple servers can
repeat the failures synchronously, causing strong failure cor-
relations. We provide an example in Section V-C.

IV. SPATIAL DISTRIBUTION OF THE FAILURES

The common belief is that all physical locations in the
same data center are identical, without much impact on server
failures. We find out, however, the spatial location sometimes
does affect the failure rate of servers, especially the relative
position (i.e. slot number) on the rack.

We study 24 production data centers in our dataset and
count the average number of failures at each rack position.
We filter out repeating failures to minimize their impact on
the statistics. Moreover, as not every rack position has the
same number of servers (e.g. operators often leave the top of
position and bottom position of the racks empty), we normalize
the failure rates to the total number of servers at each rack
position. In this statistics, we count a server failure if any of
its components fail.

Hypothesis 5. The failure rate on each rack position is
independent of the rack position.

Interestingly, different data centers show different chi-
square test results. Table IV summarizes the results. In general,
at 0.05 significance level, we can not reject the hypothesis in
40% of the data centers while we can reject it in the other
60%.

Figure 8 shows the failure ratio in two example data
centers. In data center B, we can reject the hypothesis with
high confidence, while in data center A, we cannot.

Possible Reasons. One possible reason is the design of data
center cooling and the physical structure of the racks. While
the focus of the paper is not on the relation between the
temperature and failure, we have an interesting observation.
For both data center A and B, We can observe notable spikes
at certain rack positions. Even though Hypothesis 5 cannot be
rejected for data A, a further anomaly detection reveals that
the FRs at rack position 22 and 35 are singularly high in data
center A. Specifically, assume the failures occur on each rack
position independently and uniformly randomly, according to
central limit theorem, the FR on each rack position should
follow a normal distribution with small variance as the number
of failures gets large. We estimate the expectation p and the
variation o2 of the FR at each rack position and discover that
the FRs of rack positions 22 and 35 in data center A lie out
of the range (1 — 20, u + 20).

In fact, position 35 is close to the top of a rack. With the
under-floor cooling design, it is the last position cooling air
reaches. Position 22 is next to a rack-level power module in the
custom rack design. Our motherboard temperature readings at
these places are indeed several degrees higher than the average
motherboard temperature in each rack. This higher temperature
might result in higher failure rate at these two positions.

The data centers host multiple generations of servers par-
titioned to hundreds of product lines. Each data center has
distinct building architecture too. With these many uncertain
variables, we cannot provide a universal explanation of the
uneven spatial distributions of failures. However, from the
data centers we investigate, we find that in around 90% data
centers built after 2014, Hypothesis 5 cannot be rejected at
0.02 significance level. That is, the hardware failures are more
uniformly distributed on each rack position, probably because
the new data centers have a better cooling design, making the
inside environment more consistent across all rack positions.

V. CORRELATED FAILURES

Correlated failures are the least desirable, as hardware
diagnostics and software fault tolerance usually assume in-
dependent failures. In this section, we take a closer look at
correlated failures. We see two types of correlations.

e Batch failures, i.e. a large group of servers reporting
the same failure at the same time;

o Correlated component failures, i.e. multiple compo-
nents on a single server failing at the same time.
A. Batch failures

Different from the common belief that servers fail inde-
pendently, we see cases where many servers fail in a batch,
especially those servers with the same model, in the same

TABLE V. BATCH FAILURE FREQUENCY FOR EACH COMPONENT
CLASS.

Device ri00(%) | r200(%) | rsoo(%)
HDD 55.4 22.5 2.5
Miscellaneous 3.7 1.3 0.1
Power 0.7 0.4 0
Memory 0.4 0.4 0.1
RAID card 0.4 0.2 0.1
Flash card 0.1 0.1 0
Fan 0.1 0 0
Motherboard 0 0 0
SSD 0 0 0
CPU 0 0 0

cluster and serve the same product line. Similar phenomenon
was also observed by previous study [28].

Different operators and product lines have different def-
initions and tolerance of batch failures. In general, batch
failures refer to a number of servers (above a threshold N)
failing during a short period of time ¢. Both /N and ¢ are
user-specific. A product tolerates a larger batch of failures
with better software fault tolerance. Also, if the operators fix
problems quickly, we can expect fewer batch failures.

We define a metric 7 to describe the relative frequency of
batch failures. Let ng be the number of failures of a component
class on the k-th day (k = 1... D, where D is the total number
of days we examine). We informally define the batch failure
frequency 7y as rn = (>, I{nx > N})/D, where N is the
threshold, and [is an indicator random variable. Intuitively,
ry is a normalized counter of how many days during the D
days, in which more than N failures happen on the same day,
and we normalize the count by the total time length D.

We calculate ry for each type of components, and Table V
shows the results with N = 100, 200 and 500. We find that
batch hard drive failures are common. During 2.48% of the
days (35 out of 1,411 days), we observe over 500 hard drive
failures. We also observe batch failures in components such as
memory, power supplies, RAID cards, flash cards and fans.

Examples of batch failures and possible reasons.

Here we present three batch failure cases associated with a
single large product line owning tens of thousands servers in
a single data center. These servers are incrementally deployed
during the past three to four years, with five different genera-
tions. Most of the servers run batch data processing jobs (e.g.
Hadoop jobs). We describe three batch failure cases in 2015.

Case 1: On Nov. 16th and 17th, there were thousands of
servers, or 32% of all the servers of the product line, reporting
hard drive SMARTFail failures, and 99% of these failures
were detected between 21:00 on the 16th and 3:00 on the
17th. The operators ended up replacing about 28% of these
hard drives and decommissioned the remaining 70%+ out-of-
warranty drives. The reason of the batch failure is not clear
yet.

Case 2: On Jun 4th, there were nearly 50 motherboards
failing between 5:00 and 6:00, or between 16:00 and 17:00.
The operators indicated that faulty SAS (Serial Attached SCSI)
cards caused all these failures. They decided to decommission
all these servers because they were out-of-warranty.

TABLE VI NUMBER OF CORRELATED COMPONENT FAILURES.

HDD SSD Memory Flash RAID Power Fan Motherboard
Misc. 349 2 18 2 4 6 - 6
Mother. 17 - 2 - - 1 -
Fan 1 - - - - 7
Power 3 -
RAID 46 -
Flash 22 -
Memory 40
SSD 15
TABLE VIIL EXAMPLES OF CORRELATED COMPONENT FAILURES.
Server ID Partial FOTs
Server A Fan fan_8 2016-01-22 06:35:35
Power psu_2 2016-01-22 06:36:51
Server B Fan fan_3 2016-01-22 06:35:34
Power psu_2 2016-01-22 06:36:59

Batch failures in cases 1 and 2 may be related to unex-
pected homogeneity in these components and their operating
environments. For example, components with the same model
and same firmware version may contain the same design flaws
or bugs that are triggered by the same condition. Also, as
they are in the same data center, the long-term effects of the
environment such as humidity, temperature, and vibration may
be homogeneous, leading to simultaneous failures.

Case 3: On May 16th, nearly 100 servers experienced
power failure between 1:00 and 13:00. This is a typical case as
these servers used a single power distribution unit that caused
the batch failure.

Case 3 represents a common design flaw of hidden single
point of failure. The single dependency situation is common
in data centers, especially for networking, power, and cooling.

Besides the cases mentioned above, we also observe batch
failures caused by human operator mistakes. For example, a
misoperation of the electricity provider caused a power outage
on a PDU in a data center, resulting in hundreds of failed
servers in August of 2016.

B. Correlated component failures

Correlated component failures rarely happen but often lead
to confusing failure situations. We define correlated component
failures as failures occurring on multiple components on the
same server within a single day. These failures are unlikely to
be coincidental: given the overall failure rate, we can calculate
that the chance of two independent failures happening on the
same server on the same day, which is less than 5%. In our
dataset, these failures involve at most two components and
experienced by only 0.49% of all servers that ever failed. In
addition, 71.5% of these two-component failures have a mis-
cellaneous failure report, indicating that some failures detected
by the FMS are also noticed by the operators, who decide
to report them immediately. Hard drive failures are related to
nearly all the rest of two-component failures. Table VI shows
the number of different correlated failure pairs.

Possible Reasons. We believe the primary reason for the
component correlation is that one failure causes the other. For
example, Table VII shows two cases of correlated failures of
power and fan, both of which occurred on servers in the same

TABLE VIIIL

AN EAMPLE OF SYNCHRONOUSLY REPEATING FAILURES

Server C

Server D

SMARTFail sdh8 14-08-31 16:30:24
SMARTFail sdh8 14-09-04 10:36:05
SixthFixing sdal 14-09-05 13:42:06
SixthFixing sdal 14-09-05 17:34:02
SixthFixing sdal 14-09-09 17:12:05
SixthFixing sdal 14-09-16 16:32:10

SMARTFail sdd4 14-08-31 16:26:15
SMARTFail sdd4 14-09-04 10:30:13
SixthFixing sdal 14-09-05 13:42:09
SixthFixing sdal 14-09-05 17:34:03
SixthFixing sdal 14-09-09 17:12:04
SixthFixing sdal 14-09-16 16:32:21

PendingLBA sde5 15-07-21 12:38:34

PSU (power supply unit) of the same data center on the same
day. We believe that the power failure causes the fan problem.

Correlated component failures complicate failure detection
and repair, especially automatic error handling. In the example
above, we should not replace the fans even if they are reporting
errors, while in other (common) cases, the operator should
replace any alarming fans.

C. Repeating synchronous failures

Failures on some small groups of servers can appear highly
correlated, as they repeat at the same time for many times. It
is related to the repeating failure cases in Section III-D, mostly
due to ineffective repair operations.

Table VIII shows an example. These two servers are almost
identical: same product line, same model, same deployment
time and located in adjacent racks, running the same distributed
storage system. We see that their (repeating) disk failures occur
almost synchronously for many times, which is obviously not
a coincidence.

These synchronous failures may cause trouble for software
fault tolerance, as most fail-over and recovery mechanisms do
not expect such failure pattern. The best way to avoid these
synchronous failures is to improve the repair effectiveness,
making sure that the faulty components are either repaired or
removed from production. However, as we will see in the next
section, it is not yet the case.

VI. OPERATORS’ RESPONSE TO FAILURES

Previous studies point out that shortening mean time to re-
cover (MTTR) improves overall system dependability [1, 29].
An important component in MTTR is the operator’s response,
diagnosis and the initiation of following repairs. In this section,
we analyze these response times.

We focus on the FOTs in D_fixing and D_falsealarm only
and ignore those out-of-repair cases. We define the operators’
response time (RT) for each FOT as RT = op_time —
err_time, where err_time is the failure detection time, and
op_time is the time when the operator closes the FOT (i.e.
initiates an RO or marks it as not_fixing).

We notice that many factors, such as time, component class
and product line all affect RT significantly, leading to high
variations. The remainder of the section summarizes our key
observations.

A. RT is very high in general

Figure 9 shows the CDF of RT across all FOTs. We can
see that there are many extremely long responses. E.g., 10% of

w 0.
[a)
O o.
03 — D_fixing
0.2+ : : : -- D_falsealarm [
01 ; | ; | ; ; :
50 100 150 200 250 300 350 400

Response Time (days)

Fig. 9. The CDF of RT in D_fixing and D_falsealarm.

the FOTs has RT's of longer than 140 days and 2% even longer
than 200 days. Surprisingly, operators do not actually abandon
these FOTs, but eventually initiate an RO. These extremely
long RT's significantly impact MTTR. The MTTR reaches 42.2
days and 19.1 days respectively for D_fixing and D_falsealarm,
comparing to the median of repair time of only 6.1 days and
4.9 days. In contrast, MTTR that previous studies found in
large-scale systems [5, 24] is much shorter.

Possible Reasons. We do not believe the prolonged RT is
because the operators are incapable or too lazy to do the job.
In fact, modern data center software and hardware design may
cause the change.

Though the common belief is that hardware dependability
determines the software redundancy design, we find that the
other way around is also true. Thanks to the highly resilient
software, operators know that even if the hardware has failed or
is prone to imminent failure, it will not be a catastrophe. Thus
the operators are less motivated to respond to the failures. For
example, in some product lines, operators only periodically
review the failure records in the failure pool (Figure 1) and
process them in batches to save time. We will provide more
details in the later part of this section.

Secondly, with early warnings and resilient hardware de-
sign, many hardware failures are no longer urgent. For ex-
ample, SMART reports on hard drives warn about occasional
and transient faults. The faults may be early warnings of fatal
failures, but the failure is not imminent.

On the other hand, for those software systems without good
fault handling, the repair operation can sometimes be costly
and may bring extra down time. This is because to reduce
hardware cost, current data center servers no longer support
hot-swap on memory, CPUs or PCle cards. Thus, it is likely
that the operators have to shut down the entire server to replace
the faulty component. Without proper software fault tolerance,
the repair might require some planning such as manually
migrating tasks out of the server, delaying the response.

B. RT for each component class

In this section, we want to see whether FOTs involving
easy-to-repair component get quick responses.

Figure 10 shows the cumulative distribution of RT for each
component class covering all FOTs in the dataset. We see that
the median RT's of SSD and miscellaneous failures are the

1.0

0.8l - e

Power
Motherboard
Miscellaneous
RAID card
HDD

Fan

X -- Memory

0.2 SSD

CPU

Flash card

90

06}

CDF

0.4 }HE

0.0 L

60
Response Time (days)

120

Fig. 10. The CDF of RT for each component class.

W 500
>
© :
°
~ a00}
o
£
= 300}
o
()] °
.

S 200} . IR
27

8, L e @,
& 100} § § %50 "gele e
A I A RS A LI S B
© 8090 _o 0 o o °®
SR T B AP X o T DS S R
@
= 10° 107 10° 10° 10°

Number of Failures

Fig. 11. The relation between the median RT to HDD failures and the number
of HDD failures occurred on some randomly sampled product lines during the
year 2015. Each point P(z,y) indicates that the product line that corresponds
to P encountered x HDD failures during the year 2015, and the median RT
to the failures is y days. Note that the horizontal axis is on a logarithm scale.

shortest (several hours), while those of hard drives, fans, and
memory are the longest (7 to 18 days).

We find that there are both technical and business rea-
sons for the vastly different RT for SSD and hard drives.
Technically, the fault tolerance in hard drives (both hardware
and software) are the most mature, making these failures less
urgent. In comparison, the redundancy in SSDs is less due to
higher SSD cost. Also, business-wise, only crucial and user-
facing online service product lines afford SSDs, and they have
more strict operation guidelines.

The short response time for miscellaneous failures is arti-
ficial. Miscellaneous failures are manually entered, and they
happen mostly when the hardware get deployed. During the
deployment period, operators streamline installation, testing
and debugging of new servers, effectively reducing the RT's.
Also fixing new servers do not need to take down jobs, another
convenience factor for quick response.

C. RT in different product lines

Although the company centrally monitors all servers, it
partitions the servers to different product lines. Each product

10

line has its own operator team too. We want to see whether
these product lines have similar RT.

For the same type of failure, e.g. hard drive failures, we
find that different product lines can have a big difference in
RT. The standard deviation of the RT is as high as 30.2 days
across these product lines.

Again, the variation is highly correlated with the level of
fault tolerance in the product. We see that product lines with
better software fault tolerance tend to have longer RT on
failures. For example, RT is often large for most product lines
operating large-scale Hadoop clusters.

We suspect that operators delay some responses because
they are too busy dealing with other failures, but our obser-
vations show little evidence. We observe that the median RT'
does not grow in proportionality with the number of failures.
In fact, it is just the opposite: the top 1% product lines with
most failures have a median RT' of 47 days. Out of the product
lines with fewer than 100 failures, 21% of them have a median
RT exceeding 100 days. Figure 11 shows the median RT for
all hard drive FOTs across some randomly sampled product
lines during a 12-month period.

When interviewed, most of the operators believe that given
their product design, the hardware failures no longer matter
much — even the redundancy level is restored automatically
in the modern distributed systems soon after a failure. This
is especially true for product lines with large-scale Hadoop
clusters. Also, operators want to batch up similar failures to
improve efficiency.

VII. DISCUSSIONS

During the study, we find that much old wisdom to improve
system dependability still holds. For example,

1) Most failures are independent, but the software needs
to handle occasional correlated or repeating failures on single
or multiple components. Given that these correlated failures
are more common than before, we need to improve software
resilience accordingly.

2) Automatic hardware failure detection and handling can
be very accurate, significantly reducing human labor. However,
due to the existence of multi-component failures, we need to
improve these systems to cover the new failure types.

3) In data center design, we need to avoid “bad spots”
where the failure rate is higher, or at least avoid allocating all
replicas of a service in these vulnerable zones.

In addition, we discuss in more detail about two new
important findings and their implications. We also summarize
the limitations of this trace-based study in this section.

A. Is hardware reliability still relevant in data centers?

The advancement of software redundancy and automatic
failure handling significantly improve the end-to-end depend-
ability for Internet services. MTTR for hardware components
seems less important than before, given the observations in
operators’ RT for failures.

There is a quite big team in the company managing data
center hardware. This team designed some software tools,

algorithms and operation guidelines to improve hardware de-
pendability. The monitoring system is quite effective, with very
little false positives (Table I). They even designed a tool to
predict component failures a couple of days early, hoping the
operators to react before the failure actually happens. However,
it looks like the operators are less motivated to handle failures
than we expect.

It is surprising to see that operators ignore not only
predictive warnings but also leave failed component unhandled
for days or even months. Operators also choose to leave some
partially failed out-of-warranty servers in the service too.

Delayed repair brings extra cost in many aspects. First,
tolerating more failures lead to software complexity and devel-
opment cost. Although open source solutions often offset this
cost, they still come with high management overhead. Second,
hardware failures reduce the overall capacity of the system.

Even worse, unhandled hardware failures add up and
eventually appear to software as batch or synchronous failures,
as Section V-C describes. Thus software developers have to de-
sign more aggressive methods for fault tolerance. This process
is a downward slope towards the undesirable situation when
people use unnecessarily complex software to handle hardware
failure models that we can avoid easily at the hardware level.

We believe it is time to start considering failure handling
as a joint optimization effort across software, hardware and
operation layers, to lower the total cost of ownership of the
data centers. In other words, data center dependability should
evolve to the next level, where we not only focus on reliability
metrics of a single component or a single layer but also
consider how to achieve these metrics at low total cost.

B. Problems with the “stateless” failure handling system

In our FMS, the failure records present themselves as indi-
vidual FOTs, including both diagnosis and operator responses.
All closed FOTs become the archived log entries. This stateless
design makes FMS simple and scalable. However, it becomes
difficult to reveal the connections among different FOTs.

In fact, many FOTs are strongly connected — there are
repeating or batch failures. The correlation information is
lost in FMS, and thus operators have to treat each FOT
independently. Of course, a single operator or a small operator
team might learn from past failures, but given the annual
operator turnover rate of over 50%, it is hard to accumulate
actual operation experience and tools, except for a wiki-like
documentation system that is difficult to maintain.

Thus, we believe it may be useful to build a data mining
tool to discover the correlations among these failures. More
importantly, we need to provide operators with related infor-
mation about an FOT, such as the history of the component,
the server, its environment, and the workload. This extra
information can help operators reduce the number of repeating
failures effectively. Considering the advances in data science
techniques, we believe such system has become feasible.

C. Limitations of this study

Like all data-driven study, this work has its intrinsic limi-
tations. First, although the dataset covers most of the failures,

11

there are missing data points. Also, people incrementally rolled
out FMS during the four years, and thus the actual coverage
might vary over the four years and in different data centers.

Also, lacking matching workload and other detailed mon-
itoring data, we can only describe the statistical observations
and make educated guesses about the possible reasons. We
made our best effort confirming our guesses with the operators,
but there are still unconfirmed cases as the operators do not
always remember the details.

Finally, the dataset comes from a single company, and
may not represent the entire industry. However, given that the
failures are from different generations of hardware, happen
in dozens of distinct data centers (owned or leased, large or
small), and are separately managed by hundreds of product
lines running different workload, we believe they are good
representations of state-of-the-art Internet data centers.

VIII. RELATED WORK

Much previous work has studied characteristics of system
failures extensively to understand the failure properties, which
is crucial to highly reliable large-scale systems design. Most of
these studies focus on high performance computers (HPCs) [5—

, 26]. They mainly focus on the composition of failure types,
the temporal and spatial properties of failures, the statistical
properties of time between failures and repair times, as well
as correlated failures. However, as we have seen in the paper,
the failure model in data centers is quite a difference from
HPCs, due to the heterogeneity in hardware and workload.

Not as many recent studies focus on failures in commercial
data centers. Vishwanath et al. [30] analyzed a 14-month slice
in time of hardware repair log for over 100,000 servers. Ford et
al. [28] analyzed the availability properties including corre-
lated failure properties of Google storage clusters with tens of
thousands of servers during a period of one year. Garraghan et
al. [24] analyzed Google Cloud trace log consisting event logs
of 12,500 servers over a period of 29 days. Birk et al. [25]
analyzed both physical and virtual machine crash tickets from
five commercial data centers consisting about 10K servers
during a period of one year. Our work uses a much larger
dataset with more component classes than the hard drive. We
also observe more correlated failures and much longer MTTR
in some of our product lines.

There are also many studies focusing on the failure char-
acteristics on hardware component level, such as disks [16,

, 27], memory [1, SSDs [31, 32], and GPUs [11, 21].
We use many similar analytic methods, such as hypothesis tests
and various distribution assumptions from these work. We also
borrow some metrics describing component failure properties,
such as the metrics describing failure types, temporal distribu-
tions, TBF, and operator response time. In addition to using
a very recent large-scale failure dataset, we focus on the data
center as a whole, analyzing correlation among failures, batch
failures, and repeating failures, making our study distinct from
existing ones.

While much research analyzes the MTTR of failures in
large-scale systems, we particularly focus on the operators’
response component in MTTR and discovering the human
factors of failure handling.

IX. CONCLUSION

Hardware failure study is a decades-old topic. However,
as both researchers and data center practitioners, we an-
swer the following two questions: 1) how do failure patterns
evolve, given the significant technology, economy and demand
changes in the Internet service data centers recently? 2) given
that we can get advanced software fault tolerance for free from
open source community, is hardware reliability still relevant in
data center operations?

We statistically analyze hundreds of thousands of failure
tickets from dozens of production data centers, analyzing the
failure patterns across time, space, component and product
lines. We analyze all main components instead of a single
component class, and we focus on correlations among different
failures instead of individual failures. Our study reconfirms or
extends many findings from previous work, and also observes
many new patterns in failure models and operators’ behavior.

Our work provides a fresh and deeper understanding of the
failure patterns in modern data centers. The understanding not
only helps to operate the data centers better but also calls
for a joint effort in software and hardware fault tolerance
mechanism, which minimizes the overall cost.

ACKNOWLEDGMENT

We would like to thank our colleagues at Baidu Inc. Yang
Wang for providing the datasets, Wei Wang, Xingxing Liu,
Kai Lang, and Qian Qiu for helpful comments on the failure
analysis. We also thank the students of Tsinghua University
Yong Xiang, Xin Liu, Hao Xue, Cheng Yang, Han Shen, Yiran
Li, and Yi Li for helpful comments on the drafts of this paper.

This research is supported in part by the National Natural
Science Foundation of China (NSFC) grant 61532001, Ts-
inghua Initiative Research Program Grant 20151080475, MOE
Online Education Research Center (Quantong Fund) grant
2017ZD203, and gift funds from Huawei and Ant Financial.

REFERENCES

[1] L. A. Barroso, J. Clidaras, and U. Holzle, “The datacenter as a computer:
An introduction to the design of warehouse-scale machines,” Synthesis
lectures on computer architecture, vol. 8, no. 3, pp. 1-154, 2013.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do Internet
services fail, and what can be done about it?” in USENIX symposium
on internet technologies and systems, vol. 67. Seattle, WA, 2003.

D. A. Patterson et al., “A simple way to estimate the cost of downtime.”
in LISA, vol. 2, 2002, pp. 185-188.

J. Gray, “Why do computers stop and what can be done about it?” in
Symposium on reliability in distributed software and database systems.
Los Angeles, CA, USA, 1986, pp. 3-12.

B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” [EEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337-350, 2010.

A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in International Conference on Dependable Systems and
Networks (DSN’07). IEEE, 2007.

N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how HPC systems fail,” in International Conference
on Dependable Systems and Networks (DSN’13). 1EEE, 2013, pp. 1-12.
S. Ghiasvand, F. M. Ciorba, R. Tsch, W. E. Nagel et al., “Lessons
learned from spatial and temporal correlation of node failures in high
performance computers,” in PDP 2016. 1EEE, 2016.

C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at

[6]

[7]

[8]

[9]

12

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

(32]

petascale: The case of blue waters,” in International Conference on
Dependable Systems and Networks (DSN’14). IEEE, 2014.

Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo,
“Bluegene/L failure analysis and prediction models,” in International
Conference on Dependable Systems and Networks (DSN’06). IEEE,
2006, pp. 425-434.

D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Understand-
ing GPU errors on large-scale HPC systems and the implications for
system design and operation,” in HPCA 2015. IEEE, 2015.

Y. Liang, Y. Zhang, A. Sivasubramaniam, R. K. Sahoo, J. Moreira, and
M. Gupta, “Filtering failure logs for a BlueGene/L prototype,” in Inter-
national Conference on Dependable Systems and Networks (DSN’05).
A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R. K. Iyer, “Improving
log-based field failure data analysis of multi-node computing systems,”
in International Conference on Dependable Systems and Networks
(DSN’11). 1EEE, 2011, pp. 97-108.

S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell, “Understand-
ing and exploiting spatial properties of system failures on extreme-scale
HPC systems,” in International Conference on Dependable Systems and
Networks (DSN’15). 1EEE, 2015.

B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” in Journal of Physics: Conference Series, vol. 78, no. 1.
IOP Publishing, 2007, p. 012022.

E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure trends in a large
disk drive population.” in FAST, 2007.

B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?” in FAST, 2007.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
a large-scale field study,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 1. ACM, 2009, pp. 193-204.

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends
from the field,” in International Conference on Dependable Systems and
Networks (DSN’15). 1EEE, 2015.

L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. Mcintosh-Smith,
“Unprotected computing: a large-scale study of DRAM raw error rate
on a supercomputer,” in International Conference for High PERFOR-
MANCE Computing, Networking, Storage and Analysis, 2016.

B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-scale
study of soft-errors on GPUs in the field,” in HPCA 2016. IEEE, 2016.
R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang, “Fail-
ure data analysis of a large-scale heterogeneous server environment,”
in [International Conference on Dependable Systems and Networks
(DSN’04). 1EEE, 2004.

T. N. Minh and G. Pierre, “Failure analysis and modeling in large multi-
site infrastructures,” in IFIP International Conference on Distributed
Applications and Interoperable Systems. Springer, 2013, pp. 127-140.
P. Garraghan, P. Townend, and J. Xu, “An empirical failure-analysis of a
large-scale cloud computing environment,” in HASE 2015. 1EEE, 2014.
R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen,
“Failure analysis of virtual and physical machines: patterns, causes and
characteristics,” in International Conference on Dependable Systems and
Networks (DSN’14). 1EEE, 2014.

D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Ex-
ploiting temporal locality in failures to mitigate checkpointing overheads
on extreme-scale systems,” in International Conference on Dependable
Systems and Networks (DSN’14). 1EEE, 2014.

J. Yang and F. B. Sun, “A comprehensive review of hard-disk drive relia-
bility,” in Reliability and Maintainability Symposium, 1999. Proceedings.
D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V. A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage
systems,” in Usenix Symposium on Operating Systems Design and
Implementation, OSDI 2010.

A. Fox, “Toward recovery-oriented computing,” in VLDB 2002. VLDB
Endowment, 2002.

K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability.” in ACM Symposium on Cloud Computing, 2010.
J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of flash
memory failures in the field,” ACM Sigmetrics Performance Evaluation
Review, vol. 43, no. 1, pp. 177-190, 2015.

1. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-
ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD failures
in datacenters: What, when and why?” ACM Sigmetrics Performance
Evaluation Review, vol. 44, no. 1, pp. 407-408, 2016.

	Introduction
	Methodology and Datasets
	FOT overview
	Analytical methods

	Temporal Distribution of the Failures
	Number of failures at different time periods.
	Time between failures (TBF)
	Failure rate for a single component in its life cycle
	Repeating failures and the effectiveness of repairs

	Spatial distribution of the failures
	Correlated Failures
	Batch failures
	Correlated component failures
	Repeating synchronous failures

	Operators' Response to Failures
	RT is very high in general
	RT for each component class
	RT in different product lines

	Discussions
	Is hardware reliability still relevant in data centers?
	Problems with the ``stateless'' failure handling system
	Limitations of this study

	Related Work
	Conclusion

