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Abstract—In this paper, we propose a Fast Parallel Branch
and Bound algorithm (FPBB) for computing treewidth. FPBB
searches the elimination ordering space using depth-first search
approach, and employs multithreading techniques to search
smaller divided spaces simultaneously. In order to protect the
shared hash table without increasing the running time, we have
designed a special algorithm for the readers-writers problem.
We also present a new heuristic called similar group for refining
search space. With other carefully chosen heuristics, FPBB
performs well in computing both lower bound and upper bound
on treewidth, and has solved 17 benchmark graphs whose exact
treewidths were previously unknown. Additionally, FPBB is an
anytime algorithm, which is insensitive to initial upper bound,
and is able to find exact answer quickly. Computational results
show that FPBB is significantly faster than the state-of-the-art
algorithm proposed by Zhou and Hansen.

I. INTRODUCTION

Introduced by [15], treewidth becomes an important no-
tion used in many fields nowadays, including Constraint
Satisfaction [12], Probabilistic Inference [13], Bucket Elim-
ination [6], and Recursive Conditioning [5]. Since the com-
plexity of these algorithms is exponential in the treewidth of
the graph, a better elimination ordering will help improve
the efficiency of these algorithms. Treewidth can also be
regarded as a parameter to measure how much the graph
resembles a tree. Researchers have computed the treewidth
of java programs [10] and the Internet in order to get better
understanding of their graph structures.

Moreover, many in general NP-complete problems can be
solved in polynomial or even linear time, when the treewidth
of the input graph is bounded. According to [14], if Strong
Exponential Time Hypothesis [11] is true, current best
known algorithms for a number of well-studied problems on
graphs of bounded treewidth are essentially the best possible.
Examples of these problems are INDEPENDENT SET,
DOMINATING SET, MAX CUT, etc. Therefore, treewidth
is important from both practical and theoretical perspectives.

However, it is NP-hard [1] to compute treewidth. Cur-
rently, on graphs with only 100 vertices, this problem re-
mains difficult. Since physical constraints prevent frequency
scaling and the power consumption of CPU has become a
problem, parallel computing turns out to be the dominant
paradigm in computer architecture in recent years, mainly
in the form of multicore processors [2]. Following this

trend, we have designed a Fast Parallel Branch and Bound
algorithm (FPBB) for computing treewidth, which uses
multithreading techniques and has better performance as it
utilizes more cores. We use critical sections to protect shared
data, and have designed a special algorithm for protecting
the hash table, which allows duplicated states, but is much
faster. To our knowledge, FPBB is the first practical parallel
algorithm for treewidth.

FPBB is a depth-first search based anytime algorithm,
which can find better solutions as it has more time to run.
As we will show in Section IV, this is a big advantage
for computing treewidth, because FPBB spends most time
confirming that the upper bound found at the very beginning
is the optimal answer. We also introduce a heuristic called
similar group, which is time-efficient and helps reduce the
search space. Moreover, we choose other heuristics carefully
according to their cost-performance ratios. For example, we
have discovered that Simplicial Vertex Rule has little effect
on dense graphs.

We have solved 17 benchmark graphs and improved 12
known bounds of other graphs in TreewidthLIB. Empirical
evaluation on benchmark graphs and random graphs shows
FPBB is superior to the state-of-the-art algorithm proposed
by [18].

II. RELATED WORK

The treewidth of a graph G is closely related to the
elimination orderings. When we eliminate a vertex v in G,
we make all the vertices that are adjacent to v form a clique
by adding edges, and then remove v and all incident edges
from G. An elimination ordering is a ordering of vertices
for elimination. The width of an elimination ordering is the
maximum degree of the vertices when they are eliminated
from the graph. The treewidth of G equals to the minimum
width over all possible elimination orderings. The new graph
results from eliminating some vertices of G is called a
intermediate graph.

In practice, there are many search algorithms for
treewidth, such as QuickBB [9], BestTW [7] and the one
combining BFS and DFS strategies (we refer to this al-
gorithm as COMB in this paper) [18]. QuickBB is also
a branch and bound algorithm, but being unaware of that
the same set of vertices eliminated from a graph in any



order will result in the same intermediate graph, it needs
to search the space of size Θ(n!), which grows too fast.
BestTW is an improvement on QuickBB for it searches
only Θ(2n) nodes, and uses best-first search. However, in
order to improve scalability, BestTW uses memory-efficient
representations for intermediate graphs, which incur the
overhead of intermediate graph generation every time one
node is expanded.

COMB is the state-of-the-art algorithm, which further
improves BestTW. Instead of using best-first search, COMB
uses breadth-first search to save memory. However, like
BestTW, COMB uses memory-efficient representations for
intermediate graphs, which result in extra computation for
generating them. The extra computation time is still consid-
erable even though COMB introduces an efficient depth-first
search approach to reduce the average generating time of
intermediate graphs.

Moreover, COMB is not an anytime algorithm, that is, it
needs to expand at least n−k layers to obtain the answer if
the treewidth of the graph is k, and it cannot update upper
bound or lower bound on treewidth during its execution.
This feature makes COMB very sensitive to the initial upper
bound set before the search, which has great influence on
the effect of refining search space.

Besides, because COMB only stores the search frontier in
the memory, it is difficult for it to reconstruct the solution
path after the goal is reached. According to [18], in order
to find the elimination ordering, one should repeat running
COMB many times using divide and conquer approach,
which demands more time than simply computing treewidth.

III. ALGORITHM DESCRIPTION

A. Depth-First Search

FPBB searches the elimination ordering space using
depth-first search approach. The search tree is constructed as
follows. The root node is an empty set, and after expanding
the root node, we will obtain n candidates for the first vertex
in the ordering. After expanding any of these nodes, we will
obtain n− 1 candidates (for the first vertex is used) for the
second vertex in the ordering, and the same step repeats until
the nth expansion, where there will be only one candidate
left.

There are Θ(n!) nodes in the search tree, which are too
many. In [4], it is proved that, the same set of vertices
eliminated from the original graph in any order will produce
the same intermediate graph. Thus, there are 2n possible
intermediate graphs in the search space. Fig. 1 is an example
when n=4, in which each intermediate graph is represented
by corresponding eliminated vertex set. We only need to
search 2n nodes, and duplicated nodes can be safely cut off.

A typical depth-first search algorithm will search the
first child node of the root, and go deeper and deeper
until it hits a node that has no children. Then the search
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Figure 1. 2n Intermediate Graphs in Search Space

backtracks, returning to the most recent node it has not
finished exploring.

FPBB improves the typical algorithm by using multi-
threading techniques. Expanding nodes is a branching step;
all the expanded nodes are independent. We allocate the
expanded nodes to the free threads, and these threads can
search the split subtrees simultaneously. We use a critical
section [16] to protect the pool of free threads. After entering
the critical section, current thread needs to check the number
of free threads again in case the free threads have been used
up. See Algorithm 1 for details.

Algorithm 1 Allocate expanded nodes to free threads
Input: freeT ,expNodes

1: if expNodes > 1 & freeT.len > 0 then
2: EnterCriticalSection(threadMutex)
3: if freeT.len > 0 then
4: useT ← Min(freeT.len, expNodes− 1)
5: nodesPerT ← expNodes/ (useT + 1)
6: pos← 0
7: for curT = 1 to useT do
8: pos← pos+ nodesPerT
9: Alloc(pos, freeT [curT ], nodesPerT )

10: StartThread(freeT [curT ])
11: end for
12: expNodes← nodesPerT
13: end if
14: LeaveCriticalSection(threadMutex)
15: end if

During the search, when a better upper bound is found,
FPBB will update the upper bound. Another critical section
is used for protecting current upper bound, in case more than
one thread wants to modify it at the same time.

B. Hash Table for Detecting Duplicates

FPBB uses a hash table shared by every thread for
duplicated nodes detection. The table stores reached states,
and a parameter called LB is stored along with every state.
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LB means the lower bound of current searching elimination
ordering, which is the maximum degree of the eliminated
vertices so far. When duplicated state is detected, it should
be replaced only if the LB of current state is not smaller
than the LB saved in the hash table. Otherwise, the LB
should be updated and current node should be expanded.

Since there are many threads operating at the same time,
a critical section is used to ensure that the table can be
safely accessed by many threads simultaneously. This is the
classical readers-writers problem with the constraint that no
process may access the hash table for reading or writing
while another process is writing to it, and has standard
solutions [16].

However, we use the hash table as a refining heuristic
to cut off unnecessary branches. So there could be some
duplicated states in the hash table, as long as the hash table
does help reduce the search space in most cases. In order
to get better performance, we put restrictions only for the
writers: only one writer can access the table at a time, and
any number of readers can access the table at any time.
In this way, it takes less time for the readers to access the
memory, without sacrificing the benefits of the writers. And
we will show that it will not affect the result when there are
conflicts between threads.

When one writer thread wants to modify the hash table,
it will add a new state to the table, or improve the LB
parameter of a state. We only discuss the first situation here,
as the second one is similar. The hash table is implemented
using separate chaining, so this thread can add the state to
the head of the chain, and then change the head pointer of
the table. If some reader threads want to access this chain
at that time, they may fail to access the newly added state
in the table for it is not completely added yet, but they can
still access other states started from the head pointer. It is
possible that some of their states are duplicates of the newly
added state; since they have missed this state, they may add
this state into the table again. But the chance is little and
it will not affect the result if we add two or more identical
states into the table.

The only negative result is that since there are possibly

two or more identical states in the table, the access time
of the readers may increase. As we will show in Section
IV-C, the increased access time is negligible compared to
the extra waiting time of the readers and writers in standard
solutions. Fig. 2 gives an illustration for the whole process.
See Algorithm 2 for the pseudo code. Every single statement
in the pseudo code is assumed to be atomic.

Algorithm 2 Access hash table and add new states
Input: curLB,curState

1: key ← CalculateKey(curState)
2: block ← table[key]
3: update← false
4: while block ̸= NULL do
5: if SameState(curState, block.state) then
6: if block.LB ≤ curLB then
7: return
8: else
9: update←true

10: break
11: end if
12: else
13: block ← block.next
14: end if
15: end while
16: EnterCriticalSection(tableMutex)
17: if update = true then
18: if block.LB > curLB then
19: block.LB ← curLB
20: end if
21: else
22: tmp←NewBlock(curState, LB)
23: tmp.next← table[key]
24: table[key]← tmp
25: end if
26: LeaveCriticalSection(tableMutex)
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Figure 3. An Overview of FPBB
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C. Heuristics for Refining

1) Similar Group: We introduce a new heuristic called
similar group for refining search space. Two vertices v0 and
v1 are similar if they share the same set of vertices that are
adjacent to them. Note if v0 and v1 are connected, and they
share all the other adjacent vertices, they are similar as well.

We will show that the similar property is an equivalence
relation in the graph. Obviously, this property is reflexive and
symmetric, so we only need to show that it is transitive, i.e.,
given three vertices v0, v1, v2 which satisfy v0 ∼ v1, v1 ∼
v2, we have v0 ∼ v2. If v0 and v1 are connected, since v1
and v2 share the same neighborhood, v0 and v2 are also
connected. If v0 and v1 are not connected, v0 and v2 could
not be connected, otherwise v2 will have an adjacent vertex
v0, which v1 does not share. For another vertex vn, it is easy
to see that vn is either adjacent to all of these three vertices

or none of them. Thus, v0 ∼ v2 and the similar property is
an equivalence relation. As shown in Fig. 4, all the vertices
in a equivalence class form a clique or an independent set in
the graph. This equivalence class is called a similar group.

The basic idea behind similar group is that the ver-
tices in the same similar group are interchangeable in
the elimination ordering. Given an elimination order-
ing π = [vn1, vn2, · · · , v1, vnk1 , b · · · , v2, vnk2 , · · · , v3, · · ·],
where v1, v2, v3 are in a similar group, it is easy to see
that the width of this ordering will not be affected after
interchanging these three vertices’ positions in the ordering.
Actually, after swapping the labels of the vertices inside a
similar group arbitrarily, we will get a same graph as the
original one. So the changed ordering can be regarded as the
“original ordering” for a changed graph with labels swapped.

Since the relative order of the vertices in a similar group
does not affect the intermediate graphs produced, we can
set a fixed order for them. Ideally, it will reduce the search
space to 1/s! of the original size, where s is the size of the
group. Sometimes there is more than one similar group in a
graph, which may further reduce the search space.

Similar groups can be found very fast. Since all the similar
groups can be regarded as disjoint subsets of the vertex set,
we simply enumerate every pair of vertices vi, vj , and check
whether they are similar or not. If they are similar, we can
merge them into a similar group using disjoint sets data
structure [17]. Thus, all similar groups in a graph G can be
found in Θ(n3) at the beginning of the search, where n is
the number of vertices in G.

Similar groups can be used conveniently during the
search. For all the vertices v1, v2, v3, · · · , vt in a similar
group, we add a link between vi and vi+1, and maintain



a permission table for all the vertices. Initially, only v1 has
the permission to be eliminated, and when vi is eliminated,
we will find vi+1 through the link and give it the permission.
Of course, vi+1 will lose its permission after backtracking
to vi during depth-first search. In this way, the maintaining
cost is O(1) for every expanding step.

2) Simplicial Vertex Rule: Reference [3] developed Sim-
plicial Vertex Rule and Almost Simplicial Vertex Rule,
which will not affect the treewidth of the graph. For a
subset V0 of the vertex set V , if every pair of vertices is
connected in G, V0 induces a clique. A vertex v is simplicial
if its neighbourhood induces a clique. A vertex v is almost
simplicial if the set of all but one of its neighbours induces
a clique.

The Simplicial Vertex Rule states that if a vertex v1 in a
graph G is simplicial, there exists an elimination ordering
starting with v1 for G with exact treewidth. The Almost
Simplicial Vertex Rule states that if a vertex v1 of degree
d in a graph G is almost simplicial and the lower bound on
treewidth is at least d, there exists an elimination ordering
starting with v1 for G with exact treewidth. In other words, if
simplicial or almost simplicial condition is satisfied, we only
need to expand one node in the search tree, which greatly
refines the search space.

The performance of this heuristic depends on graphs. On
some graphs, this heuristic can help to reduce the search
space by more than 90%, while on other graphs, it can hardly
cut off any branches at all. Since it is time-consuming to
test simplicial or almost simplicial conditions, it is unwise
to apply this heuristic to all kinds of graphs. According to
the experimental result in Section IV-B, we only apply it to
sparse graphs.

3) Backtrack Condition: Since we maintain LB during
the search, we can start backtracking earlier using a heuristic
from [9]. If current intermediate graph has no more than
LB + 1 vertices left, the parameter LB will not grow in
the future elimination for this graph, because the maximum
degree of its vertices is no more than LB. Thus, we will
backtrack at that time.

4) Maximum Clique: Reference [4] proved that, for all
cliques in the graph, there exists an elimination ordering
with exact treewidth with the vertices of that clique as the
last vertices of that ordering. So we can arrange the vertices
in the maximum clique as last vertices in the ordering. Since
treewidth is not smaller than the size of maximum clique of
the graph, combined with the backtrack condition heuristic,
we will never need to expand these vertices. Thus, during
the search, we simply forbid these vertices to be expanded,
which helps to cut off many branches.

We give an overview of FPBB in Fig. 3, including all
heuristics we used in the algorithm.

D. Lower Bound and Upper Bound

For those graphs on which exact treewidth are difficult
to compute, our algorithm is able to compute better upper
bound and lower bound on treewidth quickly.

A lower bound LB means there is no elimination ordering
whose width is less than LB. Thus, we set the initial upper
bound for FPBB as LB, and FPBB will search all potential
suitable elimination ordering in the search space. If the upper
bound has not been updated after the search is complete, LB
is indeed a lower bound; otherwise, we have found the exact
treewidth.

We use a modified version of FPBB (MFPBB) to compute
upper bound. Rather than fully expanding currently search-
ing node, MFPBB expands only three most promising child
nodes at a time, which greatly reduces the search space.
We use minor-min-width heuristic [9] to compute a lower
bound for each child node, and child nodes with small lower
bound are considered promising. When two child nodes
have the same lower bound, we pick the one with fewer
edges, because sparse graphs usually have smaller treewidth.
MFPBB also has constraints on the total number of nodes
expanded. If it has expanded more than 30000 nodes, it will
output current upper bound and halt.

Additionally, since FPBB is an anytime algorithm, it will
continue to give better upper bound before it find the exact
answer. In Section IV-A, we use FPBB to compute better
upper bound on benchmark graphs.

IV. EXPERIMENTAL RESULTS

We have implemented FPBB and COMB in C++. All the
benchmark graphs we used come from TreewidthLIB1. The
experiments were conducted with Intel Core i7-870 Proces-
sor and 8 GB RAM on Windows 7. Since the processor has
4 cores, we use 4 threads in FPBB.

Before the search, we will preprocess the graphs. All the
vertices will be sorted according to their degrees; vertices
with large degrees will be put in front of those with small
degrees. Thus, FPBB will try to eliminate vertices with large
degrees first, and better upper bound are easier to be obtained
in this way, as discussed in [18].

A. Benchmark Graphs

In this experiment, we try to improve both the upper
bound and the lower bound of the benchmark graphs using
FPBB. For a graph, if its upper bound meets the lower
bound, it is solved. FPBB has solved 17 benchmark graphs
whose exact treewidths were previously unknown, and im-
proved 12 known bounds of the others. Due to limited space,
we only list some of our results in Table I. In the table,
improved bounds are emphasized using bold font. Columns
show the name of the graph (Name), the number of vertices
(N), known upper bound (UB) and lower bound (LB) on

1http://people.cs.uu.nl/hansb/treewidthlib/index.php



Table I
IMPROVED BOUNDS OF BENCHMARK GRAPHS.

Name N UB LB Exp Sec
1dj7 73 26 26 1255 0.02
1ku3 60 22 22 1587 0.02
1kw4 67 27 27 342097 1.40
1i27 73 26 26 443639 2.15
1c9o 66 28 28 907015 3.84
1e0b 59 24 24 7455969 20.84
1r69 63 29 29 6376178 21.31

miles750 128 36 36 5703212 22.59
1en2 69 16 16 10676259 50.97
1qtn 86 23 23 10181450 72.67
1gcq 67 30 30 132623386 645.50

queen9 9* 81 58 53 250602432 758.95
1d3b 68 25 25 209300902 1328.91
1c4q 67 31 29 297316678 1808.00
1l9l 70 28 28 333484641 1844.53
1cc8 70 32 29 350271892 2854.10

1fse 67 26 25 282549 1.56
26 26 108955514 706.78

1hj7 66 28 27 8864657 38.81
28 28 227279244 1180.41

1dp7 76 26 25 955153 4.85
26 26 294211812 2176.82

treewidth, number of expanded nodes (Exp), and running
time in seconds (Sec). For last 3 graphs, FPBB improves
both upper bound and lower bound on treewidths of them. A
“*” indicates that the Simplicial Vertex Rule is not applied.

From the table, we can see that FPBB is able to find better
upper bounds of some graphs quickly. For those graphs
whose exact treewidths are still unknown, such as queen9 9,
FPBB is able to improve its lower bound and shorten the
gap between the upper bound and the lower bound.

B. Random Graphs
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In this subsection, we run FPBB on random graphs
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FPBB without it (FPBBFast) on these graphs, and compare
the numbers of their expanded nodes. We enumerate m from
40 to 340 with step of 10. For each m, we generate 100
random graphs and compute the average expanded nodes of
two variations. Fig. 5 gives a comparison between FPBBSim
and FPBBFast. It is clear that Simplicial Vertex Rule works
well when the graph is sparse.

In the second experiment, we generate 300 random graphs
with the n = 35 and m = 140, a parameter set used in
both [7] and [18]. We run COMB, FPBB and FPBB Single
(FPBB with single thread implementation) on these graphs,
and compare the running times of them in Fig. 6. Lines in
the figure show linear least squares fit of data. Since the
running time of COMB will be greatly influenced by the
initial upper bound, we set the initial upper bound as the
exact treewidth of the graph to obtain steady results in this
experiment. So the results of COMB in this experiment are
probably improved. On average, FPBB is about 14 times
faster than COMB, and 3.1 times faster than single thread
implementation. Since we use the CPU with only 4 cores,
and the shared hash table is accessed quite heavily during
the execution (every time one thread expands a new node, it
needs to access the hash table), we believe it is a satisfying
result.



Table II
A COMPARISON AMONG FPBB, ITS VARIATIONS AND COMB

FPBB UB+5 Variations(Sec) COMB
Name TW UB Alo LUT Exp Sec LUT Sec ST RF WF Exp Sec

queen6 6* 25 25 7 0.03 11187 0.03 0.02 0.03 0.06 0.18 0.16 11185 0.39
miles500 22 22 0 0.03 2 0.03 0.03 0.03 0.05 0.05 0.05 2 0.02
inithx.i.1 56 56 3 0.09 1392 0.09 0.08 0.09 0.08 0.09 0.09 1305 15.07

queen7 7* 35 35 18 0.02 533999 0.67 0.02 0.66 1.79 11.06 9.64 529242 26.96
myciel5 19 19 18 0.03 3482899 4.71 0.03 4.71 14.02 33.74 32.18 3351675 73.20
miles750 36 38 24 1.39 5703212 22.59 3.01 26.08 79.54 34.82 38.44 - -

queen8 8* 45 46 24 16.10 18345352 33.73 16.15 33.87 107.62 441.22 390.63 - -

FPBB stores all the intermediate graphs produced so far,
while COMB only stores the intermediate graphs in current
layer. However, COMB needs to maintain a FIFO queue
to perform breadth-first search, which demands additional
memory. Besides, since the number of intermediate graphs
in each layer grows exponentially as the depth increases,
the whole search space is only several times larger than
the size of largest layer. In this experiment, FPBB stores
about 4 times more nodes than COMB on average. See
Fig. 7. However, in most cases, if the exact treewidth is not
known before the search, COMB will expand exponentially
more nodes (thus requiring exponentially larger memory)
than FPBB.

C. DIMACS GRAPHS

In this experiment, we compare FPBB with its variations
and COMB using DIMACS Vertex Coloring Graphs in Table
II. Columns show the name of the graph (Name), exact
treewidth(TW), initial upper bound found by MFPBB before
the search (UB), times of allocating expanded nodes to
free threads (Alo), Last Updated Time for upper bound in
seconds, i.e., time used for finding the elimination ordering
of the exact treewidth (LUT), number of Expanded nodes
(Exp), running time in Seconds of FPBB (Sec), Single
Thread implementation (ST), Readers-Preference algorithm
(RF), and Writers-Preference algorithm (WF). The big col-
umn UB+5 means that we run FPBB with initial upper
bound 5 larger than TW in order to test its sensitivity to the
initial upper bound. We also list the number of expanded
nodes and running time of COMB in the last column.

According to the results, our implemented version of
COMB is about 2 to 6 times faster than COMB implemented
in [18], and has less expanded nodes. It shows that our
implementation of COMB is a good one, which makes the
comparison between COMB and FPBB seem reasonable.

The upper bound found by MFPBB is very close to the
exact treewidth. The Allocated times are relative small com-
pared to the expanded nodes, which means there are little
time wasting on allocating new tasks to free threads during
the execution. And the last updated time is surprisingly short,

which means FPBB spends most time confirming the upper
bound it found at the very beginning is the optimal answer.

Comparing to COMB, FPBB is significantly faster. On the
graph queen7 7, FPBB is about 40 times faster than COMB.
This gap is even larger than the gap on random graphs, which
indicates that FPBB may have better performance on difficult
graphs. Since we use the same heuristics in COMB, the node
expansions of the two algorithms are similar. But comparing
to [18], the node expansion is improved. For example, on the
graph queen7 7, expanded nodes of FPBB are only 57.1%
of expanded nodes of COMB in [18]. FPBB has significantly
less average processing time for each expanded node than
COMB, because it does not need to generate the intermediate
graph or maintain a FIFO queue. Moreover, it is easy for
FPBB to save the corresponding elimination ordering when
updating the upper bound, while COMB needs to use divide
and conquer approach to reconstruct the solution path.

We also implemented different variations of FPBB, such
as single thread implementation, and two standard solutions
to the readers-writers problem stated in [16]. If we use
the readers-preference algorithm, the hash table cannot be
updated in time, and duplicated states are more likely to
be added into the table. If we use the writers-preference
algorithm, all other threads need to wait if one thread is
adding a new state. Besides, these two algorithms require
more semaphores, which bring additional waiting time.

From the table, we can see that they are even slower than
single thread implementation on most graphs. A special case
is miles750, in which ST takes more time. It is because
the optimal elimination ordering starts with a vertex with
small degree, and can be found quickly by threads after
allocating nodes. But if there is only one thread, it needs
to do much computation before searching this vertex, and
the initial upper bound cannot be updated in time, which
results in larger searching space. This is also the reason why
COMB fails to compute treewidth on last two graphs: the
initial upper bound is not the exact treewidth, and cannot be
updated during the execution, so the search space is much
larger than the search space of FPBB.

From the UB+5 column, we can see that FPBB is not



sensitive to the initial upper bound. Both last updated time
and total running time are not significantly affected after the
initial upper bound is enlarged by 5.

V. CONCLUSIONS

In this paper, we have presented a fast parallel branch and
bound algorithm for computing treewidth, which is based
on depth-first search in the elimination ordering space. We
use a modified version of standard solution to the readers-
writers problem to get better performance. Benefited from
depth-first search approach, FPBB is an anytime algorithm,
which makes it insensitive to the upper bound initially set.
We have proposed a new heuristic called similar group for
refining search space. Combined with other carefully chosen
heuristics, FPBB has solved 17 benchmark graphs and
improved 12 known bounds of other graphs. Experimental
results show that FPBB is much faster than state-of-the-art
algorithm COMB and is good at computing lower bound
and upper bound on treewidth.

For future work, we want to further investigate the effect
of different heuristics on graphs with different features,
which may help we choose the heuristics according to the
situation. Moreover, since the basic idea behind similar
group is to use graph isomorphism to cut off branches, we
believe this idea can be further developed to get stronger
heuristic.
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