
Boreas: An Accurate and Scalable Token-Based Approach
to Code Clone Detection

Yang Yuan and Yao Guo
Key Lab of High-Confidence Software Technologies (Ministry of Education)

Department of Computer Science, School of EECS, Peking University
Beijing 100871, P. R. China

{yangyuan, yaoguo}@pku.edu.cn

ABSTRACT
Detecting code clones in a program has many applications
in software engineering and other related fields. In this
paper, we present Boreas, an accurate and scalable token-
based approach for code clone detection. Boreas introduces
a novel counting-based method to define the characteris-
tic matrices, which are able to describe the program seg-
ments distinctly and effectively for the purpose of clone de-
tection. We conducted experiments on JDK 7 and Linux
kernel 2.6.38.6 source code. Experimental results show that
Boreas is able to match the detecting accuracy of a recently
proposed syntactic-based tool Deckard, with the execution
time reduced by more than an order of magnitude.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

Keywords
Code clone detection, count vector, count matrix

1. INTRODUCTION
In software development, programmers frequently reuse

code fragments by copy-paste operations. Those code frag-
ments, which are similar or identical, are called code clones.
Code clones could bring many problems to the software sys-
tems [4]. For example, if many cloned instances exist in a
software system and a bug was found in the cloned code,
one need to find and fix all of them. It would produce un-
predictable results if inconsistent modifications are made to
these clones. According to [10], a significant part of large
software system source code is cloned, typically ranging from
7%-23%. If these code clones could be efficiently and accu-
rately detected, the problems they brought might be easily
solved or at least properly controlled.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3ĺC7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

Many code clone detection approaches have been proposed
in the literature. Generally, they can be classified into four
categories: textual approaches [9], token-based approaches
[5,7], syntactic approaches [1,3,11] and semantic approaches
[6, 8]. This classification is made according to the level of
analysis applied to the source code.

The traditional belief is that more complicated approaches
would have better understanding about the structure of the
programs, so that they can identify code clones more accu-
rately. Although syntactic approaches could produce better
results compared to previous token-based work in general,
these high level approaches have many shortcomings. On
one hand, syntactic and semantic approaches normally re-
quire that the source code are syntactically correct or even
compilable, which makes them inapplicable to incomplete
code. On the other hand, high level approaches usually de-
mand more computation and storage resources.

Token-based approaches are inherently language-independ-
ent and low-cost. They work faster because they only need
to transform the source code into tokens, without the need to
construct ASTs or PDGs. They are more language-independ-
ent compared to higher-level approaches as they are much
easier to migrate to other languages. They also need less
resources because they process low level data, which in turn
makes them more scalable to large-scale software systems.
However, previous token-based approaches, which are mostly
based on the sequence of tokens and with variable names ig-
nored, have their own limitations. Because they are too
focused on tokens, they could easily lose the big picture,
thus typically they cannot detect those clones with swapped
lines or added/removed tokens.

In this paper, we propose a new token-based code clone
detection approach called Boreas, which introduces a novel
counting-based characteristic matrix definition to overcome
the shortcomings of traditional token-based techniques.

2. OVERVIEW
The key of a code clone detection approach is to generate

precise abstractions for each code fragment. After abstrac-
tion, code fragments can be compared efficiently, using a
variety of comparing or clustering techniques.

As a token-based approach, Boreas matches the variables,
rather than matching sequences or structures. Using this
idea, the similarity of two code segments is decided by the
proportion of variables that could be matched based on their
characteristics.

We introduce the notion of Counting Environments(CE),
and use these CEs to describe the patterns of variables. A

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

286

Figure 1: An overview of Boreas

count vector(CV) for one variable is a combination of oc-
currence counts in different CEs. Since each CV represents
one variable in the code fragment, by combining all the CVs
together, we build a count matrix (CM), which forms a com-
prehensive description of the code fragment.

We choose variable occurrences for three reasons. First, it
is easy to implement. Second, it does reflect the pattern of
variables: the description of being in one CE for many times
and never appear in another CE, does help us identify the
corresponding variable. Finally, which is the most interest-
ing and important, counting-based representation has high
tolerance to minor modifications, making Boreas effective on
type-3 clones [2], including clones made by swapping lines
or adding/removing tokens, where most existing code clone
detection approaches were unable to detect effectively.

The overall process of Boreas can be divided into six steps,
as shown in Figure 1.

3. COUNT MATRIX
3.1 Counting Environments

Counting Environments (CEs) are used for describing pat-
terns of variables, and play a key role in Boreas. We divide
the CEs into three stages, while each stage provides a more
concrete and distinct description for the chosen variables.

The first stage, Näıve Counting, includes the used and
defined environments. The CEs of this stage are easy to
discover, because we only need to find the variables in the
code fragments, with little analysis. The variables that have
an “=” (or “+=”, “-=”, etc.) token right after them are
treated as being defined.

A slightly higher stage, In-statement Counting, includes
CEs that should be identified using information from the

statements in which the variable appears. For example, if
the statement starts with “if”, we know that this is a if-
statement, and the if-environment count of the correspond-
ing variable will be increased by 1.

The third stage, Inter-statement Counting, involves some
environments that need the information of multiple state-
ments to identify. A typical example is the nested loop-level
of variable. That is, to decide the variable is in a first-level
loop, a second-level loop, or a deeper level loop.

In summary, the following CEs are used in this paper:

Näıve Counting Stage:
The variable is used
The variable is defined

In-statement Counting Stage:
The variable is in an if-predicates
The variable is added or subtracted
The variable is multiplied or divided
The variable is an array subscript
The variable is defined by expression with constants

Inter-statement Counting Stage:
The variable is in a first-level loop
The variable is in a second-level loop
The variable is in a third-level loop (or deeper)

To clarify, we do use some syntactic techniques while iden-
tifying CEs. However, the simple analysis involves only ba-
sic analysis without the construction of ASTs, so Boreas still
belongs to the category of token-based techniques.

3.2 Count Vector and Count Matrix
Using m CEs, we can generate an m-dimensional Count

Vector(CV) for each variable, where the i-th dimension of

287

the CV is the occurrence count of the variable in the i-th
CE. So the CV is a characteristic vector for the variable.
We notice that variables are not easy to distinguish only
by names. To avoid syntactic analysis, we simply treat all
the variables with the same name as the same variable in
Boreas. According to our experimental results, variables
with the same name usually have similar functions, thus
this simplification is generally acceptable.

After CVs are computed, we combine all n CVs in a code
fragement (with n variables), and obtain a n×m Count Ma-
trix(CM). CM is a abstraction for the code fragments, and
we compare two code fragments by comparing their CMs.

In order to better characterize a code segment, Boreas also
generates CVs for both keywords and punctuations, which
uses similar methods as variables. The details are omitted
due to space limitations.

4. COMPARISON
During comparision, we use Cosine similarity to compare

the CVs for variables, while using a modified proportional
similarity function to compare the CVs for keywords and
punctuations.

4.1 Cosine Similarity Function
Cosine similarity is a measure of similarity between two

vectors by measuring the cosine of the angle between them.1

The cosine of 0 is 1, and less than 1 for any other angles.
The cosine of the angle between two vectors thus determines
whether two vectors are pointing to roughly the same direc-
tion. Cosine Similarity is a perfect choice for comparing
Count Vectors, because CVs represent the patterns of vari-
ables, and the closeness of two variables can be approxi-
mated by the cosine of vectors in high dimensional spaces.

For two vectors a and b with the angle α between them,
their cosine similarity is defined as

CosSim = cos(α) =
a · b

||a||||b|| =

∑m
i=1 ai × bi√∑m

i=1 a2
i ×

√∑m
i=1 b2

i

.

4.2 Proportional Similarity Function
Boreas uses an improved proportional similarity function

to to compare the CVs of keywords and punctuation marks.
The function is modified to prevent incorrect zero similar-
ity. Given two occurrence counts a and b(a >= b), their
proportional similarity is defined as

ProSim =
1

a + 1
+

b

a + 1
.

4.3 Calculating Similarity
The similarity of two blocks is the product of the similar-

ity of their CMs, and the similarity of their CVs of the key-
word and punctuation marks (as computed using the above
proportional similarity function).

We sort the variables according to their used frequencies,
and then try to match each variable a of block A to those
variables of block B whose ranks are close to the rank of
a. Duplicated matches are allowed, that is, although every
variable of block A must match exact one variable of block
B, there are no such restrictions on the variables of block B.
This greatly simplifies the implementation and computation
of the comparison: we only need to search a small range of

1http://en.wikipedia.org/wiki/Cosine_similarity

variables for each variable of block A, and pick up the most
similar one as the similarity value for each variable, and then
compute the product of these similarities.

5. EXPERIMENTAL RESULTS
In this section, we evaluate Boreas in terms of three as-

pects: scalability, clone quantity and clone quality.
We have implemented Boreas in C++, and use the same

scanner generated by lex to process both Java and C/C++
code. It can be easily migrated to other languages. We
use the source code of Java SE Development Kit 7 (7,492
files, 2,260,946 LoC) and Linux kernel 2.6.38.6 (35,856 files,
10,068,963 LoC) as the test data. Due to limited space,
we mainly present the results on JDK here. The experi-
ments were conducted with Core 2 Duo CPU T9400 and
6GB DDR3 RAM on Ubuntu 11.04.

We use three different stages of CEs in the experiments:
Näıve Counting Stage, In-statement Counting State and Inter-
statement Counting Stage. Higher level stage also includes
CEs of the lower level stages. These three stages may also
be combined CVs of keywords and punctuation marks (rep-
resented as “+key”). However, Näıve Counting Stage has
comparatively poor performance, so we only keep the Näıve
Counting Stage without CVs of keywords and punctuation
marks, which is the simplest version of Boreas. Hence, we
evaluated a total of five versions of Boreas.

In the experiments, we use Deckard 1.2.1 for comparison.
The parameters of Deckard were set as mint = 50, stride =
2, which are the default parameter settings of Deckard and
also the settings used in the paper [3].

5.1 Execution Time
We investigate the scalability of Boreas in terms of its

running time and space requirements. The running time of
Boreas is split into two parts: setup time and comparison
time. The setup time is the time consumed by Boreas to per-
form lexical analysis, and compute CMs and CVs; the com-
parison time is the time consumed by comparison. Deckard
also has vector generation period and vector clustering pe-
riod, so we compare them correspondingly.

Comparison time is shown in Figure 2(a) (the vertical
scale is logarithmic). As expected, Boreas is much faster
than Deckard. The setup times are in general stable for
different versions of Boreas. Deckard uses different parsers
for different languages (which is not language-independent),
and the parser for Java is very slow. The setup time of
Deckard is about 1-5 times more than the setup time of
Boreas, because it requires to construct ASTs, which is much
more time consuming.

As another indication of scalability, we compare the space
requirements of Boreas and Deckard. The source code of
Linux kernel is only 401 MB, but Deckard requires 5 GB
temporary files, which is much more than the requirement
of Boreas (249 MB).

5.2 Clone Quantity
We measure the clone quantity by counting the number

of lines of code (LoC) within the detected cloned code frag-
ments. We choose to count the Unique Cloned LoC, that
is, each line of the code will be counted for only once, no
matter how many times they appear in the identified clones.
In this paper, “LoC” always represents unique cloned LoC.

288

831 752
1083

1594
1266

2470

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1.0 0.99 0.98 0.97 0.96 0.95 0.90 0.85 0.80

C
o

m
p

a
re

 T
im

e
 (

S
e

c)

Similarity

Naïve Counting

In-statement

In-statement+key

Inter-statement

Inter-statement+key

Deckard

(a)Comparison time on JDK

0

20

40

60

80

100

120

1.0 0.99 0.98 0.97 0.96 0.95 0.90 0.85 0.80

C
lo

n
e

d
 L

o
C

(#
)/

 1
0

^
4

Similarity

Naïve Counting

In-statement

In-statement+key

Inter-statement

Inter-statement+key

With mismatched

Without mismatched

(b)Cloned LoC on JDK

Figure 2: Comparison time and cloned LoC of Boreas (using different settings) and Deckard on JDK

Moreover, we found a large proportion of the clones iden-
tified by Deckard is trivial, including self-clones and import
or package clones. Here, self clones refers to two code frag-
ments having a large shared fragment, and they are reported
as clones because Deckard found that their shared fragment
is “similar”. Import or package clones are those clones con-
sisting of only “import”and“package” statements (mainly in
JDK). Since Boreas does not include these kinds of clones,
we perform a post-process to remove all the self-clones and
import or package clones from the results of Deckard.

As mentioned before, since Boreas and Deckard use differ-
ent granularities, Deckard produces clones with mismatched
brackets, which Boreas does not produce. On both JDK and
Linux, Deckard finds more clone lines than Boreas when
counting mismatched clones. However, when mismatched
clones are removed, Boreas can find more clone lines than
Deckard in JDK, while the two methods are very close in
Linux. Results are shown in Figure 2(b).

5.3 Clone Quality
Clone quality is an important metric, but it is very dif-

ficult to measure the false positive rates automatically. In-
stead, we use manual inspection to detect false positives.
For each set of results, we randomly picked 100 cloned pairs
and inspected them manually. Due to the small set of sam-
ples inspected, this false positive rate might not be very
accurate, but it could still reflect the clone quality of the
corresponding technique to some degree.

According to our results, Näıve Counting has the highest
false positive rate; and the false positive rates of different
versions will grow when similarity decreases. The results
show that Boreas is able to maintain a relative low false pos-
itive rate (<5%) when similarity is as low as 0.95 (0.90 for
JDK), while the false positive rate of Deckard reaches above
10% when similarity is lower than 0.96. Thus when compar-
ing the numbers of cloned lines in the previous subsections,
we also need to consider the false positive rates at different
similarity settings.

6. CONCLUSION
In this paper, we propose a new approach called Boreas

for detecting code clone clusters. Boreas introduces a novel
counting-based characteristic matrix to represent the pat-
terns of variables. With two fast similarity functions, Boreas

is able to perform faster clone detection than previous ap-
proaches. The experimental results show that Boreas is able
to match the clone detection capability of by one of the
state-of-the-art approach Deckard with much faster execu-
tion time.

7. ACKNOWLEDGEMENTS
This work is supported in part by the National Basic Re-

search Program of China under Grant No. 2009CB320703,
the Science Fund for Creative Research Groups of China un-
der Grant No. 60821003, National High-Tech R&D Program
under Grant No. 2011AA01A202, and the National Natural
Science Foundation of China under Grant No.61103026.

We also want to thank Prof. Lingxiao Jiang for helping
us with the Deckard software.

8. REFERENCES
[1] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.

Clone detection using abstract syntax trees. In ICSM, 1998.
[2] M. Gabel, L. Jiang, and Z. Su. Scalable detection of

semantic clones. In ICSE 2008, pages 321–330, 2008.
[3] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:

Scalable and accurate tree-based detection of code clones.
In ICSE, pages 96–105, 2007.

[4] E. Jürgens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In ICSE, pages 485–495, 2009.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Software Eng,
28(7):654–670, 2002.

[6] J. Krinke. Identifying similar code with program
dependence graphs. In WCRE, pages 301–309, 2001.

[7] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-miner: Finding
copy-paste and related bugs in large-scale software code.
IEEE Trans. Software Eng, 32(3):176–192, 2006.

[8] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: detection of
software plagiarism by program dependence graph analysis.
In KDD ’06, pages 872–881, 2006.

[9] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of
near-miss intentional clones using flexible pretty-printing
and code normalization. In ICPC, pages 172–181, 2008.

[10] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Sci. Comput. Program,
74(7):470–495, 2009.

[11] Y. Yuan and Y. Guo. CMCD: Count Matrix based Code
Clone Detection. In APSEC, pages 250–257, 2011.

289

